Discontinuous partial derivatives example

  • #1
littlemathquark
33
9
Homework Statement
$$f(x,y)=\left\{\begin{array}{ccc} (x^2+y^2)\sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) & , & (x,y)\neq (0,0) \\ 0 & , & (x,y)=(0,0) \end{array}\right.$$
Relevant Equations
none
$$f(x,y)=\left\{\begin{array}{ccc} (x^2+y^2)\sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) & , & (x,y)\neq (0,0) \\ 0 & , & (x,y)=(0,0) \end{array}\right.$$ This function is differentiable at (0,0) point but ##f_x## and ##f_y## partial derivatives not continuous at (0,0) point. I need another examples like this. Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
IIRC,
##f(x,y):=\frac {2xy}{x^2+ y^2}##
 
Last edited:
  • #3
Take a classical univariate differentiable but not continuously differentiable example:
[tex]
f(x) := \begin{cases} x^2 \sin (1/x), &x\neq 0 \\ 0,&x=0 \end{cases}
[/tex]
Then define
[tex]
h(x,y) = f(x) + f(y).
[/tex]
Obviously, one can extend this to arbitrary finite dimension.
 
  • Like
Likes PeroK and FactChecker

Similar threads

Replies
4
Views
952
Replies
3
Views
1K
Replies
4
Views
742
Replies
6
Views
1K
Replies
11
Views
2K
Back
Top