MHB Discover Positive Real Solutions in a System of Equations

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on finding positive real solutions for a system of equations involving variables \( a_1 \) to \( a_{100} \). By applying the AM-GM inequality, it is established that the product of the equations leads to the conclusion that all inequalities must hold as equalities. This results in a relationship where each variable is inversely related to the next, specifically \( a_1 = \frac{1}{a_2} \), \( a_2 = \frac{1}{a_3} \), and so forth. Ultimately, the solutions are determined to be \( a_1 = 2 \) and \( a_2 = \frac{1}{2} \), repeating this pattern throughout the system. The method effectively demonstrates how to derive the solutions systematically.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive real solutions of the system below:

$a_1+\dfrac{1}{a_2}=4,\,a_2+\dfrac{1}{a_3}=1,\cdots,a_{99}+\dfrac{1}{a_{100}}=4,\,a_{100}+\dfrac{1}{a_1}=1$
 
Mathematics news on Phys.org
Every term, $a_i$ can be expressed by $a_1$ as follows:
\[a_k = \frac{(k-1)-(\frac{k}{2}-1)a_1}{2k-(k-1)a_1} \; \; \; \; k = 2,4,..,100. \\\\\\ a_j = \frac{2(j-1)-(j-2)a_1}{j-\left ( \frac{j-1}{2} \right )a_1}\; \; \; j =1,3,5,..,99. \\\\\\ a_{100}=\frac{99-49a_1}{200-99a_1}\; \; \; \; \; \;and\;\;\;\;\; a_{100}+\frac{1}{a_1}=1\Rightarrow a_1^2-4a_1+4 = 0\]
The positive (and only) solution is: $a_1 = 2$

So
\[a_k = \frac{1}{2}\; \; \; k = 2,4,..,100 \\\\ a_j = 2\; \; \; \; j = 1,3,..,99\]
 
Thanks for participating, lfdahl! :) I think it really is a great idea to relate $a_{100}$ with $a_1$ again and with the two well defined formulas, how to solve further would then be as clear as daylight. Well done!:)

Another method that I saw online that I would like to share:

By AM-GM:

$a_1+\dfrac{1}{a_2}\ge2\sqrt{\dfrac{a_1}{a_2}},\,\cdots,\,a_{100}+\dfrac{1}{a_1}\ge2\sqrt{\dfrac{a_{100}}{a_1}}$

Multiplying we get

$\left( a_1+\dfrac{1}{a_2} \right)\left( a_2+\dfrac{1}{a_3} \right)\cdots\left( a_{100}+\dfrac{1}{a_1} \right)\ge2^{100}$,

From the system of equations we get

$\left( a_1+\dfrac{1}{a_2} \right)\left( a_2+\dfrac{1}{a_3} \right)\cdots\left( a_{100}+\dfrac{1}{a_1} \right)=2^{100}$,

so all thoseinequalities are equalities, i.e.

$a_1+\dfrac{1}{a_2}=2\sqrt{\dfrac{a_1}{a_2}}$

$\left(\sqrt{a_1}-\dfrac{1}{\sqrt{a_2}} \right)^2=0,\,\,\,\rightarrow a_1=\dfrac{1}{a_2}$

and analogously $a_2=\dfrac{1}{a_3},\,\cdots,\,a_{100}=\dfrac{1}{a_1}$.

Hence, we get $a_1=2,\,a_2=\dfrac{1}{2},\,\cdots\,,a_{99}=2,\,a_{100}=\dfrac{1}{2}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
1
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top