- #1
danni7070
- 92
- 0
[Solved] Radius of Convergent
Find the radius of convergent for [tex] \sum_{n=1}^\infty (1-2^n)(ln(n))x^n [/tex]
[tex]\frac {1}{R} = L = \lim \frac{a_{n+1}}{a_n} [/tex]
[tex] lim \frac {(1-2^{n+1})(ln(n+1)}{(1-2^n)(ln(n))} = L [/tex]
[tex] lim \frac {(1-2^n)(ln(n))}{(1-2^{n+1})(ln(n+1))} = R [/tex]
I'm dizzy looking at this but how can I find:
[tex] \lim_{n\rightarrow\infty} R [/tex]
Homework Statement
Find the radius of convergent for [tex] \sum_{n=1}^\infty (1-2^n)(ln(n))x^n [/tex]
Homework Equations
[tex]\frac {1}{R} = L = \lim \frac{a_{n+1}}{a_n} [/tex]
The Attempt at a Solution
[tex] lim \frac {(1-2^{n+1})(ln(n+1)}{(1-2^n)(ln(n))} = L [/tex]
[tex] lim \frac {(1-2^n)(ln(n))}{(1-2^{n+1})(ln(n+1))} = R [/tex]
I'm dizzy looking at this but how can I find:
[tex] \lim_{n\rightarrow\infty} R [/tex]
Last edited: