- #1
diredragon
- 323
- 15
Homework Statement
##|4^{3x}-2^{4x+2}*3^{x+1}+20*12^x*3^x| > 8*6^x(8^{x-1}+6^x)##
For some numbers ##a, b, c, d## such that ##-\infty < a <b < c <d < +\infty ## the real solution set to the given inequality is of the form ##(-\infty, a] \cup [b, c] \cup [d, +\infty)## Prove it by arriving at the given result.
Homework Equations
3. The Attempt at a Solution [/B]
##a) 2^{6x}-12*2^{4x}*3^x + 20*2^{2x}*3^{2x} < -3^x*2^{4x} - 8*3^{2x}*2^{2x}##
##a) 2^{6x}-11*2^{4x}*3^x + 28*2^{2x}*3^{2x} < 0##
##a) 2^{4x}-11*2^{2x}*3^x + 28*3^{2x} < 0##
##b) 2^{6x}-12*2^{4x}*3^x + 20*2^{2x}*3^{2x} > +3^x*2^{4x} + 8*3^{2x}*2^{2x}##
##b) 2^{6x}-15*2^{4x}*3^x + 12*2^{2x}*3^{2x} > 0##
##b) 2^{4x}-15*2^{2x}*3^x + 12*3^{2x} > 0##
I don't know where to go on from this. I need to get certain numbers ##a, b, c, d## so that they would fit the result.