MHB Discrete maths problem - tracing an algorithm

AI Thread Summary
The discussion centers on understanding the symbol Xc in a discrete mathematics algorithm, which represents indexing through a series of variables (x1, x2, etc.). The variable c starts at 1 and increments with each loop iteration, allowing the algorithm to access each corresponding x value sequentially. Participants confirm that the variable i counts the number of 1's in the input, with the loop terminating when c reaches 7. The explanation clarifies the concept of indexing for the original poster, who expresses relief at grasping this foundational idea. Overall, the conversation highlights the importance of understanding indexing in algorithmic processes.
Sterling1
Messages
2
Reaction score
0
Hello,

I'm working on a discrete mathematics for computing paper and am stuck on what a symbol is trying to convey. Sorry if this seems like a stupid question (I feel stupid for not being able to work it out myself), I've just started this subject and am still getting used to it.

My question is what does the Xc mean in this algorithm (picture attached)? I understand that X1, X2 etc are the different variables, but does the Xc have something to do with the variable C := 1? If so, what does that symbol mean? I.e. what am I supposed to do with the variable in relation to C?

I hope this is clear enough and that once it's been explained to me I can crack on with the paper. Thank you very much in advance.

DM screen.PNG
 
Last edited by a moderator:
Physics news on Phys.org
It's indexing. So you have a bunch of values, $x_1, x_2, \dots,x_n,$ right? As you're looping through the repeat section, you're updating $c$. When you start, you have $c=1,$ so that $x_c=x_1.$ The next time you come through the loop, $c$ has been incremented by one, which is what the $c:=c+1$ line does. That means this time through the loop, $c=2,$ making $x_c=x_2.$ So essentially, the incrementing of $c$ allows you to examine each of the $x_1, x_2,\dots,x_n$ values one-by-one. Does that help?
 
Ackbach said:
It's indexing. So you have a bunch of values, $x_1, x_2, \dots,x_n,$ right? As you're looping through the repeat section, you're updating $c$. When you start, you have $c=1,$ so that $x_c=x_1.$ The next time you come through the loop, $c$ has been incremented by one, which is what the $c:=c+1$ line does. That means this time through the loop, $c=2,$ making $x_c=x_2.$ So essentially, the incrementing of $c$ allows you to examine each of the $x_1, x_2,\dots,x_n$ values one-by-one. Does that help?

Ah right, so essentially the i variable is counting how many 1's are in the input? I.e. in this algorithm i would equal 4 by the end? And the loop stops when C = 7? If I'm correct in that thinking then I've understood your explanation, and if I'm wrong then clearly I've missed something.

Thank you very much for your help, it makes sense to me (I think) now. It seems stupid to have not understood such a basic concept as indexing. Thank you.
 
Sterling said:
Ah right, so essentially the i variable is counting how many 1's are in the input?

Yep!

Sterling said:
I.e. in this algorithm i would equal 4 by the end?

Yes, I would agree.

Sterling said:
And the loop stops when C = 7?

Also correct.

Sterling said:
If I'm correct in that thinking then I've understood your explanation, and if I'm wrong then clearly I've missed something.

Thank you very much for your help, it makes sense to me (I think) now. It seems stupid to have not understood such a basic concept as indexing. Thank you.

You're very welcome!
 
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Back
Top