- #1
ognik
- 643
- 2
Given an energy functional $ E=\int_{0}^{\infty} \,dr.r\left[\frac{1}{2}\left(\d{\phi}{r}\right)^2 - S.\phi\right] $
I am told that discretizing on a lattice ri=ih (h=lattice size, i is i axis) leads to :
$ 2{r}_{i}{\phi}_{i} - {r}_{i+\frac{1}{2}}{\phi}_{i+1} - {r}_{i-\frac{1}{2}}{\phi}_{i-1} = {h}^{2}{r}_{i}{S}_{i} $
I am also told that that a lattice $ {r}_{i}=\left(i - \frac{1}{2}\right)h $ leads to the same result. And yes, I worked this out and it did lead to the above equation - but when I did the exercise for the lattice ri=ih, I couldn't get the same result (see below):
From $ E=\int_{0}^{\infty} \,dr.r\left[\frac{1}{2}\left(\d{\phi}{r}\right)^2 - S.\phi\right] =\int_{0}^{\infty} \,dr\left[r\frac{1}{2}\left(\d{\phi}{r}\right)^2 - r.S.\phi\right] $
Discretising, $ E=\frac{1}{2h}\sum_{1}^{N} {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 - h \sum_{1}^{N} {r}_{i}{S}_{i}{\phi}_{i} $
Using the variation principle we ask that $ \pd{E}{{\phi}_{i}} = 0 $
$ So\: \pd{E}{{\phi}_{i}} = \pd{E}{{\phi}_{i}}[\frac{1}{2h}\sum_{1}^{N} {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 - h \sum_{1}^{N} {r}_{i}{S}_{i}{\phi}_{i}] = 0 $
$ \therefore \frac{1}{2h} \pd{E}{{\phi}_{i}}\sum_{1}^{N} {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 = h {r}_{i}{S}_{i} $
$ \therefore \frac{1}{2} \pd{E}{{\phi}_{i}} [{r}_{1}\left({\phi}_{1} - {\phi}_{0}\right)^2 + ... +\: {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 + \: {r}_{i+1}\left({\phi}_{i+1} - {\phi}_{i}\right)^2 +...+{r}_{N}\left({\phi}_{N} - {\phi}_{N-1}\right)^2 ]
= h^2 {r}_{i}{S}_{i} $
$ \therefore \left( {r}_{i} + {r}_{i+1}\right) {\phi}_{i} - {r}_{i}{\phi}_{i-1} - {r}_{i+1}{\phi}_{i+1} = h^2 {r}_{i}{S}_{i} $
This is close to the equation I am trying to get to, and I can use $ \frac{1}{2}\left({r}_{i} + {r}_{i+1}\right) = {r}_{i+\frac{1}{2}} $ to get
$ \therefore 2{r}_{i+\frac{1}{2}} {\phi}_{i} - {r}_{i}{\phi}_{i-1} - {r}_{i+1}{\phi}_{i+1} = h^2 {r}_{i}{S}_{i} $
Clearly if I subtract $\frac{1}{2}$ from all the indices I have got there for the left side (but not the right) - but (apart from the right side) how can I justify that? I would seem to be shifting the basis by $\frac{1}{2}$ - and with r from cylindrical coords, $ {r}_{i} \ne {r}_{i-\frac{1}{2}} $
I am told that discretizing on a lattice ri=ih (h=lattice size, i is i axis) leads to :
$ 2{r}_{i}{\phi}_{i} - {r}_{i+\frac{1}{2}}{\phi}_{i+1} - {r}_{i-\frac{1}{2}}{\phi}_{i-1} = {h}^{2}{r}_{i}{S}_{i} $
I am also told that that a lattice $ {r}_{i}=\left(i - \frac{1}{2}\right)h $ leads to the same result. And yes, I worked this out and it did lead to the above equation - but when I did the exercise for the lattice ri=ih, I couldn't get the same result (see below):
From $ E=\int_{0}^{\infty} \,dr.r\left[\frac{1}{2}\left(\d{\phi}{r}\right)^2 - S.\phi\right] =\int_{0}^{\infty} \,dr\left[r\frac{1}{2}\left(\d{\phi}{r}\right)^2 - r.S.\phi\right] $
Discretising, $ E=\frac{1}{2h}\sum_{1}^{N} {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 - h \sum_{1}^{N} {r}_{i}{S}_{i}{\phi}_{i} $
Using the variation principle we ask that $ \pd{E}{{\phi}_{i}} = 0 $
$ So\: \pd{E}{{\phi}_{i}} = \pd{E}{{\phi}_{i}}[\frac{1}{2h}\sum_{1}^{N} {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 - h \sum_{1}^{N} {r}_{i}{S}_{i}{\phi}_{i}] = 0 $
$ \therefore \frac{1}{2h} \pd{E}{{\phi}_{i}}\sum_{1}^{N} {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 = h {r}_{i}{S}_{i} $
$ \therefore \frac{1}{2} \pd{E}{{\phi}_{i}} [{r}_{1}\left({\phi}_{1} - {\phi}_{0}\right)^2 + ... +\: {r}_{i}\left({\phi}_{i} - {\phi}_{i-1}\right)^2 + \: {r}_{i+1}\left({\phi}_{i+1} - {\phi}_{i}\right)^2 +...+{r}_{N}\left({\phi}_{N} - {\phi}_{N-1}\right)^2 ]
= h^2 {r}_{i}{S}_{i} $
$ \therefore \left( {r}_{i} + {r}_{i+1}\right) {\phi}_{i} - {r}_{i}{\phi}_{i-1} - {r}_{i+1}{\phi}_{i+1} = h^2 {r}_{i}{S}_{i} $
This is close to the equation I am trying to get to, and I can use $ \frac{1}{2}\left({r}_{i} + {r}_{i+1}\right) = {r}_{i+\frac{1}{2}} $ to get
$ \therefore 2{r}_{i+\frac{1}{2}} {\phi}_{i} - {r}_{i}{\phi}_{i-1} - {r}_{i+1}{\phi}_{i+1} = h^2 {r}_{i}{S}_{i} $
Clearly if I subtract $\frac{1}{2}$ from all the indices I have got there for the left side (but not the right) - but (apart from the right side) how can I justify that? I would seem to be shifting the basis by $\frac{1}{2}$ - and with r from cylindrical coords, $ {r}_{i} \ne {r}_{i-\frac{1}{2}} $