- #1
Schmidt
- 1
- 0
The displacement y(t) of a driven mass-spring system is described by the differential
equation
2y'' + 14y = 8 cos(2t)
with initial value conditions y(0) = 0; y'(0) = 0.
(a) Is this system damped or undamped?
(b) Is this system resonant?
(c) Write the solution to the IVP in terms of a product of two sine functions
(d) What is the frequency of the beats?Could someone please guide me with this question? I'm fine with part a (since the coefficient of y' = 0) but am rather confused about the other subsections. I also couldn't find anything of use in the prescribed textbook.
ThanksEdit: I found a source that said natural frequency = (k/m)^1/2 , and this is not equal to the frequency of the driving force (2) and therefore it is not resonant. I also found the formula to express this as a product of two sines.
Now d is only part I am stuck on.
equation
2y'' + 14y = 8 cos(2t)
with initial value conditions y(0) = 0; y'(0) = 0.
(a) Is this system damped or undamped?
(b) Is this system resonant?
(c) Write the solution to the IVP in terms of a product of two sine functions
(d) What is the frequency of the beats?Could someone please guide me with this question? I'm fine with part a (since the coefficient of y' = 0) but am rather confused about the other subsections. I also couldn't find anything of use in the prescribed textbook.
ThanksEdit: I found a source that said natural frequency = (k/m)^1/2 , and this is not equal to the frequency of the driving force (2) and therefore it is not resonant. I also found the formula to express this as a product of two sines.
Now d is only part I am stuck on.
Last edited: