- #1
SamitC
- 36
- 0
Member warned that template must be used
Conventionally we have the following equation of a plane ax+by+cz=d where d = ax0+by0+cz0. Where (x0,y0,z0) is a known point on the plane.
Now if we try to find the distance between a point P and a plane we take any point on the plane Q (x,y,z) and find the vector from Q to P and project on the normal vector. Problem is... when we put the co-ordinates of point P to evaluate "d" in the equation of plane. In the equation of plane, (x0,y0,z0) in "d" is of a point that is on the plane. But in this case P is outside the plane.
Am I missing out on something here?
For example please see: http://mathinsight.org/distance_point_plane_examples
Now if we try to find the distance between a point P and a plane we take any point on the plane Q (x,y,z) and find the vector from Q to P and project on the normal vector. Problem is... when we put the co-ordinates of point P to evaluate "d" in the equation of plane. In the equation of plane, (x0,y0,z0) in "d" is of a point that is on the plane. But in this case P is outside the plane.
Am I missing out on something here?
For example please see: http://mathinsight.org/distance_point_plane_examples