- #1
Poly1
- 32
- 0
Let $AB$ be the distance between the two points $A(x_{1} ~ x_{2})$ and $B(x_{2}, ~ y_{2})$ -- e.g. $AB = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}$.
Why is the point $P$ which divides $AB$ in the ratio $\lambda:\mu$ given by $\displaystyle ~~ \bigg(\frac{\lambda x_{2}+\mu x_{1}}{\lambda+\mu}, ~ \frac{\lambda y_{2}+\mu y_{1}}{\lambda+\mu}\bigg)$? How do you show that?
Why is the point $P$ which divides $AB$ in the ratio $\lambda:\mu$ given by $\displaystyle ~~ \bigg(\frac{\lambda x_{2}+\mu x_{1}}{\lambda+\mu}, ~ \frac{\lambda y_{2}+\mu y_{1}}{\lambda+\mu}\bigg)$? How do you show that?