- #1
shooride
- 36
- 0
Hi,
I read somewhere the geodesic distance between an arbitrary point ##x## and the base point ##x_0## in normal coordinates is just the Euclidean distance. Why?! That's the part I don't understand. I know that one can write
[itex]
g_{\mu \nu} = \delta_{\mu \nu} - \frac{1}{6} (R_{\mu \rho \nu \sigma} + R_{\mu \sigma \nu \rho} ) (x^\rho-x_0^\rho) (x^\sigma-x_0^\sigma) + \dots
[/itex]
I've tried to figure out the square of the distance (which seems more simple than the distance) in normal coordinates. The calculations wasn't clear, what I get is
[itex]
d(x,x_0)^2=g_{\mu\nu} (x^\mu-x_0^\mu)(x^\nu-x_0^\nu) +1/3 R_{\mu\nu\rho\sigma}x^\rho x^\sigma(x^\mu-x_0^\mu)(x^\mu- x_0^\nu) + \dots
[/itex]
Where am I doing anything wrong?
I read somewhere the geodesic distance between an arbitrary point ##x## and the base point ##x_0## in normal coordinates is just the Euclidean distance. Why?! That's the part I don't understand. I know that one can write
[itex]
g_{\mu \nu} = \delta_{\mu \nu} - \frac{1}{6} (R_{\mu \rho \nu \sigma} + R_{\mu \sigma \nu \rho} ) (x^\rho-x_0^\rho) (x^\sigma-x_0^\sigma) + \dots
[/itex]
I've tried to figure out the square of the distance (which seems more simple than the distance) in normal coordinates. The calculations wasn't clear, what I get is
[itex]
d(x,x_0)^2=g_{\mu\nu} (x^\mu-x_0^\mu)(x^\nu-x_0^\nu) +1/3 R_{\mu\nu\rho\sigma}x^\rho x^\sigma(x^\mu-x_0^\mu)(x^\mu- x_0^\nu) + \dots
[/itex]
Where am I doing anything wrong?