- #1
Desrib49
- 1
- 0
Hello all,
I'll start out by saying that I am a fairly new space/cosmology enthusiast with no real background in the subject (high school physics is about it), so this question will likely seem quite elementary to most, if not all, of you.
Moving on. I recently bought Pedro Ferreira's https://www.amazon.com/dp/0753822563/?tag=pfamazon01-20 as a way to build a base level of knowledge. I was humming along just fine until I got to this concept that a stationary person will perceive that objects contract while they are in motion, and was wondering if somebody could shed some light on the subject.
To illuminate where I am struggling, here's the example Ferreira gives. If a train with a metal bar on board runs through a station, somebody on the platform can measure its length by clicking a stopwatch exactly when the front and back ends of the bar pass him (assume he knows the speed of the train and said speed is constant. No point making this more difficult than it needs to be). Likewise, somebody on the train can do the same: click a stopwatch on and off when the front and back of the bar pass the guy. No problems yet.
Then spacetime principles come into play. Ferreira states that the person on the train will perceive time as running more slowly on the platform than the person actually on the platform. Again, I understand this. Ferreira did a good job explaining how space and time are connected and how motion affects their relationship. However, Ferreira then states that the person on the train will perceive that more time has passed on the platform observer's stopwatch than the platform observer himself does. This is what I don't understand. These two assertions seem to be complete contradictions.
To me, it makes sense that since time "slows down" for people the faster they travel, the train observer should get a shorter time measurement than the platform observer, as stuff outside his reference frame is happening more rapidly than within it; for him, one second has passed when for somebody outside, two seconds have passed (and I am using hyperbole here to make it easy). Multiply that by the speed of the train and it seems that the platform observer should see the rod as expanding, not contracting.
Anyways, can anybody explain to me how I went wrong? Thanks in advance for your help
I'll start out by saying that I am a fairly new space/cosmology enthusiast with no real background in the subject (high school physics is about it), so this question will likely seem quite elementary to most, if not all, of you.
Moving on. I recently bought Pedro Ferreira's https://www.amazon.com/dp/0753822563/?tag=pfamazon01-20 as a way to build a base level of knowledge. I was humming along just fine until I got to this concept that a stationary person will perceive that objects contract while they are in motion, and was wondering if somebody could shed some light on the subject.
To illuminate where I am struggling, here's the example Ferreira gives. If a train with a metal bar on board runs through a station, somebody on the platform can measure its length by clicking a stopwatch exactly when the front and back ends of the bar pass him (assume he knows the speed of the train and said speed is constant. No point making this more difficult than it needs to be). Likewise, somebody on the train can do the same: click a stopwatch on and off when the front and back of the bar pass the guy. No problems yet.
Then spacetime principles come into play. Ferreira states that the person on the train will perceive time as running more slowly on the platform than the person actually on the platform. Again, I understand this. Ferreira did a good job explaining how space and time are connected and how motion affects their relationship. However, Ferreira then states that the person on the train will perceive that more time has passed on the platform observer's stopwatch than the platform observer himself does. This is what I don't understand. These two assertions seem to be complete contradictions.
To me, it makes sense that since time "slows down" for people the faster they travel, the train observer should get a shorter time measurement than the platform observer, as stuff outside his reference frame is happening more rapidly than within it; for him, one second has passed when for somebody outside, two seconds have passed (and I am using hyperbole here to make it easy). Multiply that by the speed of the train and it seems that the platform observer should see the rod as expanding, not contracting.
Anyways, can anybody explain to me how I went wrong? Thanks in advance for your help
Last edited by a moderator: