- #1
- 7,376
- 11,342
- TL;DR Summary
- The term 'distance' is used in Knn. Are these distance functions required to satisfy the properties of a metric?
Hi,
Just curious as to whether distances 'd' , used in Knn ; K nearest neighbors, in Machine Learning, are required to be metrics in the Mathematical Sense, i.e., if they are required to satisfy, in a space A:
##d: A \times A \rightarrow \mathbb R^{+} \cup \{0\} ;
d(a,a)=0 ;
d(a,b)=d(b,a) ; d(a,c) < d(a,b)+d(b,c) ##
?
Just curious as to whether distances 'd' , used in Knn ; K nearest neighbors, in Machine Learning, are required to be metrics in the Mathematical Sense, i.e., if they are required to satisfy, in a space A:
##d: A \times A \rightarrow \mathbb R^{+} \cup \{0\} ;
d(a,a)=0 ;
d(a,b)=d(b,a) ; d(a,c) < d(a,b)+d(b,c) ##
?