MHB Divanshu's question via email about a volume by revolution

AI Thread Summary
The discussion focuses on calculating the volume of a solid formed by rotating a region around a line that serves as the lower boundary. It is noted that the volume remains unchanged if the entire region is shifted down by 4 units, allowing for rotation around the x-axis instead. The formula for the volume of revolution is provided, specifically using the integral V = ∫_a^b π[f(x)]² dx. The specific volume calculation presented is V = ∫_0^8 π(x² + 4)² dx. The approach and calculations are confirmed as correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5635

Here is a graph of the region to be rotated. Notice that it is being rotated around the same line that is the lower boundary.

View attachment 5636

The volume will be exactly the same if everything is moved down by 4 units, with the advantage of being rotated around the x-axis. So using the rule for finding the volume of a solid formed by rotating $\displaystyle \begin{align*} f(x) \end{align*}$ around the x axis: $\displaystyle \begin{align*} V = \int_a^b{ \pi\,\left[ f(x) \right] ^2\,\mathrm{d}x } \end{align*}$ the volume we want is $\displaystyle \begin{align*} V &= \int_0^8{\pi\, \left( x^2 + 4 \right) ^2 \,\mathrm{d}x } \end{align*}$.
 

Attachments

  • volume question.JPG
    volume question.JPG
    12.5 KB · Views: 135
  • volume graph.JPG
    volume graph.JPG
    44.6 KB · Views: 132
Mathematics news on Phys.org
Prove It said:
https://www.physicsforums.com/attachments/5635

Here is a graph of the region to be rotated. Notice that it is being rotated around the same line that is the lower boundary.

https://www.physicsforums.com/attachments/5636

The volume will be exactly the same if everything is moved down by 4 units, with the advantage of being rotated around the x-axis. So using the rule for finding the volume of a solid formed by rotating $\displaystyle \begin{align*} f(x) \end{align*}$ around the x axis: $\displaystyle \begin{align*} V = \int_a^b{ \pi\,\left[ f(x) \right] ^2\,\mathrm{d}x } \end{align*}$ the volume we want is $\displaystyle \begin{align*} V &= \int_0^8{\pi\, \left( x^2 + 4 \right) ^2 \,\mathrm{d}x } \end{align*}$.
This is correct.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top