- #1
chowdhury
- 36
- 3
1.) I have the following equation
$$\nabla \cdot \left( \mathbf{A} : \nabla_{s}\mathbf{b} \right) - \frac{\partial^2\mathbf{c}}{\partial t^2} = - \nabla \cdot \left( \mathbf{D}^{Transpose} \cdot \nabla \phi \right )$$
Is my index notation correct?
$$(A_{ijkl} b_{k,l}),_{j} - c_{i,tt} = - (D_{ijk}^{Transpose} \phi_{,k}),j $$
This becomes
$$(A_{ijkl} b_{k,l}),_{j} - c_{i,tt} = - (D_{kij} \phi_{,k}),j $$
2.) New set of A, b, C, d below.
$$\nabla \cdot \left( \mathbf{A} \cdot \nabla \mathbf{b} \right) = \nabla \cdot \left( \mathbf{C} : \nabla_{s}\mathbf{d} \right) $$
Is my index notation correct?
$$(A_{ij} b_{,j}),i = (C_{ijk} d_{j,k})_{,i}$$
$$\nabla \cdot \left( \mathbf{A} : \nabla_{s}\mathbf{b} \right) - \frac{\partial^2\mathbf{c}}{\partial t^2} = - \nabla \cdot \left( \mathbf{D}^{Transpose} \cdot \nabla \phi \right )$$
Is my index notation correct?
$$(A_{ijkl} b_{k,l}),_{j} - c_{i,tt} = - (D_{ijk}^{Transpose} \phi_{,k}),j $$
This becomes
$$(A_{ijkl} b_{k,l}),_{j} - c_{i,tt} = - (D_{kij} \phi_{,k}),j $$
2.) New set of A, b, C, d below.
$$\nabla \cdot \left( \mathbf{A} \cdot \nabla \mathbf{b} \right) = \nabla \cdot \left( \mathbf{C} : \nabla_{s}\mathbf{d} \right) $$
Is my index notation correct?
$$(A_{ij} b_{,j}),i = (C_{ijk} d_{j,k})_{,i}$$
Last edited: