- #1
PhysicsKush
- 29
- 4
- Homework Statement
- Let's say we have a radial field ##F=\hat{r}/r^{2+\varepsilon}##. What is the divergence of this field ? You may ignore the origin.
- Relevant Equations
- $$\vec{\nabla} \cdot \vec{F} = \left(\left( \frac{1}{r^2 }\right)\frac{\partial(F_{r} r^2)}{\partial r}
+ \left( \frac{1}{r \sin \theta}\right)\frac{\partial(f_{\theta}\sin \theta)}{\partial \theta} + \left( \frac{1}{r\sin \theta}\right)\frac{\partial f_{\phi}}{\partial \phi}\right) dr d\theta d\phi$$
Following (1),
\begin{align*}
\text{div} F = \vec{\nabla} \cdot \vec{F} &= \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 F_{r}\right) \\ &= \frac{1}{r^2} \frac{\partial }{\partial r} \left( r^2 \frac{1}{r^{2+\varepsilon}}\right) \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} (r^{-\varepsilon}) \\ &= \left( \frac{-\varepsilon}{r^2}\right) \frac{1}{r^{\varepsilon +1}} \\ &= -\frac{\varepsilon}{r^{\varepsilon +3}} \qquad , \text{for} \ \ r \in \mathbb{R} \setminus \{ 0\}
\end{align*}
The solution I'm providing seems to be to simplistic. Perhaps I have missed a step somewhere? Thank you in advance.
\begin{align*}
\text{div} F = \vec{\nabla} \cdot \vec{F} &= \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 F_{r}\right) \\ &= \frac{1}{r^2} \frac{\partial }{\partial r} \left( r^2 \frac{1}{r^{2+\varepsilon}}\right) \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} (r^{-\varepsilon}) \\ &= \left( \frac{-\varepsilon}{r^2}\right) \frac{1}{r^{\varepsilon +1}} \\ &= -\frac{\varepsilon}{r^{\varepsilon +3}} \qquad , \text{for} \ \ r \in \mathbb{R} \setminus \{ 0\}
\end{align*}
The solution I'm providing seems to be to simplistic. Perhaps I have missed a step somewhere? Thank you in advance.