- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello again! (Wave)
I am looking at an exercise of the divergence theorem..
We want to apply the divergence theorem for the sphere $x^2+y^2+z^2=a^2$ in the case when the vector field is $\overrightarrow{F}=\hat{i}x+\hat{j}y+\hat{k}z$.$\displaystyle{\nabla \cdot \overrightarrow{F}=\frac{\partial{F}}{\partial{x}} \hat{i}+\frac{\partial{F}}{\partial{y}} \hat{j}+\frac{\partial{F}}{\partial{z}} \hat{k}=3}$
So $\displaystyle{\iiint_D \nabla \cdot \overrightarrow{F} dV=\iiint_D 3 dV=4 \pi a^3}$, which is $\displaystyle{3 \cdot \text{Volume of a sphere}}$.$\displaystyle{G=x^2+y^2+z^2=a^2}$
$\displaystyle{\hat{n}=\frac{\nabla G}{|\nabla G|}=\frac{2x \hat{i}+2y \hat{j}+2z \hat{k}}{2 \sqrt{x^2+y^2+z^2}}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{a}}$
$\displaystyle{\overrightarrow{F} \cdot \hat{n}=\frac{x^2+y^2+z^2}{a}=\frac{a^2}{a}=a}$
$\displaystyle{\iint_S \overrightarrow{F} \cdot \hat{n} d \sigma=a \iint_S d \sigma=a(4 \pi a^2)=4 \pi a^3}$, which is $\displaystyle{a \cdot \text{Area of a sphere}}$
But... since $D$ is a sphere, why is $S$ also a sphere and not a circle?
I am looking at an exercise of the divergence theorem..
We want to apply the divergence theorem for the sphere $x^2+y^2+z^2=a^2$ in the case when the vector field is $\overrightarrow{F}=\hat{i}x+\hat{j}y+\hat{k}z$.$\displaystyle{\nabla \cdot \overrightarrow{F}=\frac{\partial{F}}{\partial{x}} \hat{i}+\frac{\partial{F}}{\partial{y}} \hat{j}+\frac{\partial{F}}{\partial{z}} \hat{k}=3}$
So $\displaystyle{\iiint_D \nabla \cdot \overrightarrow{F} dV=\iiint_D 3 dV=4 \pi a^3}$, which is $\displaystyle{3 \cdot \text{Volume of a sphere}}$.$\displaystyle{G=x^2+y^2+z^2=a^2}$
$\displaystyle{\hat{n}=\frac{\nabla G}{|\nabla G|}=\frac{2x \hat{i}+2y \hat{j}+2z \hat{k}}{2 \sqrt{x^2+y^2+z^2}}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{a}}$
$\displaystyle{\overrightarrow{F} \cdot \hat{n}=\frac{x^2+y^2+z^2}{a}=\frac{a^2}{a}=a}$
$\displaystyle{\iint_S \overrightarrow{F} \cdot \hat{n} d \sigma=a \iint_S d \sigma=a(4 \pi a^2)=4 \pi a^3}$, which is $\displaystyle{a \cdot \text{Area of a sphere}}$
But... since $D$ is a sphere, why is $S$ also a sphere and not a circle?