- #1
gikiian
- 98
- 0
Homework Statement
As a part of Method of Frobenius, I am encountered with the following problems:
Evaluate the following limits:
Q1. [itex]\stackrel{limit}{_{x→0}}\frac{1-2x}{x}[/itex]
Q2. [itex]\stackrel{limit}{_{x→0}}\frac{x-1}{x}[/itex]
Q3. [itex]\stackrel{limit}{_{x→0}}\frac{1-2x}{x}+\frac{x-1}{x}[/itex]
In context of the above problems, I am having difficulty in verifying the following property of limits:
[itex]\stackrel{limit}{_{x→a}}(f(x)+g(x))=\stackrel{limit}{_{x→a}}f(x)+ \stackrel{limit}{_{x→a}}g(x)[/itex]
Homework Equations
N/A
The Attempt at a Solution
A1. [itex]\stackrel{limit}{_{x→0}}\frac{1-2x}{x}=∞[/itex] (i.e. the limit is divergent)
A2. [itex]\stackrel{limit}{_{x→0}}\frac{x-1}{x}=-∞[/itex] (i.e. the limit is divergent)
A3. [itex]\stackrel{limit}{_{x→0}}\frac{1-2x}{x}+\frac{x-1}{x}=\frac{1-2x+x-1}{x}=\frac{-x}{x}=-1[/itex] (i.e. the limit is convergent)I am just confused by the apparent fact that sum of two divergent limits can be a convergent limit. Even though this is apparent in my problem, I still want to make sure if I am not messing up anywhere.