- #1
tmt1
- 234
- 0
I have:
$$\int_{1}^{2} \frac{1}{x lnx} \,dx$$
I can set $u = lnx$, therefore $du = \frac{1}{x} dx$ and $xdu = dx$. Plug that into the original equation:
$$\int_{1}^{2} \frac{x}{x u} \,du$$
Or
$$\int_{1}^{2} \frac{1}{ u} \,du$$
Therefore: $ln |u | + C$ and $ln |lnx | + C$
So I need to find the value of this equation where $x = 2$ and where $x = 1$, subtract the latter from the former.
Wolfram says $ln(ln2) = -0.3665$ and $ln(ln1) = - \infty$
so $ln(ln 2) - ln(ln1) = \infty $.
Is this correct?
$$\int_{1}^{2} \frac{1}{x lnx} \,dx$$
I can set $u = lnx$, therefore $du = \frac{1}{x} dx$ and $xdu = dx$. Plug that into the original equation:
$$\int_{1}^{2} \frac{x}{x u} \,du$$
Or
$$\int_{1}^{2} \frac{1}{ u} \,du$$
Therefore: $ln |u | + C$ and $ln |lnx | + C$
So I need to find the value of this equation where $x = 2$ and where $x = 1$, subtract the latter from the former.
Wolfram says $ln(ln2) = -0.3665$ and $ln(ln1) = - \infty$
so $ln(ln 2) - ln(ln1) = \infty $.
Is this correct?