- #1
kalish1
- 99
- 0
I have this question:
Find all numbers $n\geq 1$ for which the polynomial $x^{n+1}+x^n+1$ is divisible by $x^2-x+1$. How do I even begin?
**So far I have that $x^{n+1}+x^n+1 = x^{n-1}(x^2-x+1)+2x^n-x^{n-1}+1,$ and so the problem is equivalent to finding $n$ such that $2x^n-x^{n-1}+1$ is divisible by $x^2-x+1.$**
A solution that I found goes as follows (but I don't understand it!):
*Assume that $x^n+1=(x^m-x+1)Q(x).$ The polynomial $x^m-x+1$ has a real root in the interval $(0,1)$ but $x^n+1$ has no positive real roots. So, no such pairs $m,n$ exist.*
Any help?
This question has been crossposted here: Divisibility of a polynomial by another polynomial - Mathematics Stack Exchange
Find all numbers $n\geq 1$ for which the polynomial $x^{n+1}+x^n+1$ is divisible by $x^2-x+1$. How do I even begin?
**So far I have that $x^{n+1}+x^n+1 = x^{n-1}(x^2-x+1)+2x^n-x^{n-1}+1,$ and so the problem is equivalent to finding $n$ such that $2x^n-x^{n-1}+1$ is divisible by $x^2-x+1.$**
A solution that I found goes as follows (but I don't understand it!):
*Assume that $x^n+1=(x^m-x+1)Q(x).$ The polynomial $x^m-x+1$ has a real root in the interval $(0,1)$ but $x^n+1$ has no positive real roots. So, no such pairs $m,n$ exist.*
Any help?
This question has been crossposted here: Divisibility of a polynomial by another polynomial - Mathematics Stack Exchange