- #1
qamaz
- 3
- 0
$$\text{ Let } n∈N \text{ and } (a1,a2,…,a_{n})∈\mathbb{Z}^{n}.
\text{ Prove that always exist } i,j∈ \underline{n} \text{ with } i≤j \text{ so }
\sum\limits_{k=i}^{\\j} a_{k} \text{ divisible by n} .$$
\text{ Prove that always exist } i,j∈ \underline{n} \text{ with } i≤j \text{ so }
\sum\limits_{k=i}^{\\j} a_{k} \text{ divisible by n} .$$
Last edited: