MHB Dman's question at Yahoo Answers concerning linear approximates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear
AI Thread Summary
The discussion focuses on using linear approximation to estimate 1/0.101 by finding the tangent line of the function f(x) = 1/x at a nearby point. The derivative of f(x) is calculated as -1/x², evaluated at x = 0.1, to derive the equation of the tangent line. By applying the linear approximation formula, the estimate for 1/0.101 is found to be approximately 9.9. This method provides a close approximation compared to the actual value of 9.900990099009... The discussion emphasizes the effectiveness of linear approximation in estimating values of functions near known points.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Use linear approximation, Let 1/.101 and f(x)=1/x and find the equation of the tangent line?

Use linear approximation, i.e. the tangent line, to approximate 1/.101 as follows: Let f(x)=1/x and find the equation of the tangent line to f(x) at a "nice" point near .101 Then use this to approximate 1/.101

Here is a link to the question:

Use linear approximation, Let 1/.101 and f(x)=1/x and find the equation of the tangent line? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello dman,

I would begin with:

$\displaystyle \frac{\Delta f}{\Delta x}\approx\frac{df}{dx}$

Using $\Delta f=f(x+\Delta x)-f(x)$ and multiplying through by $\Delta x$ we obtain:

$\displaystyle f(x+\Delta x)\approx\frac{df}{dx}\Delta x+f(x)$

Now, using the following:

$\displaystyle f(x)=\frac{1}{x}\,\therefore\,\frac{df}{dx}=-\frac{1}{x^2},\,x=0.1,\,\Delta x=0.001$

we may state:

$\displaystyle \frac{1}{0.101}\approx-\frac{1}{0.01}\cdot0.001+\frac{1}{0.1}=10-0.1=9.9$

For comparison:

$\displaystyle \frac{1}{0.101}=9.900990099009...$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top