- #1
chocok
- 21
- 0
Question:
If g(x)[tex]\in[/tex] K[x] and 1< deg(g)=n.
Given that G/K is a normal field ext., if g(x)=g1(x)*...*gk(x)[tex]\in[/tex] G[x],
then deg(g1)=...=deg(gk)
My attempt:
I let G = K adjoins the coefficients of gi's.
Let [tex]\alpha[/tex] be a root of g.
Notice that K [tex]\subseteq[/tex] G [tex]\subseteq[/tex] K( [tex]\alpha[/tex]) = G( [tex]\alpha[/tex])
We can express g(x) = irr( [tex]\alpha[/tex], G) *p(x) for some p(x) [tex]\in[/tex] K[x].
if i let g1 be irr( [tex]\alpha[/tex], G),
then deg(g1) = deg( irr( [tex]\alpha[/tex], G)) = [G([tex]\alpha[/tex]):G]=[K([tex]\alpha[/tex]):G]
Next, we do the same thing again with another root, say [tex]\beta[/tex].
g(x) = irr([tex]\beta[/tex], G) *q(x) for some q(x) [tex]\in[/tex] K[x]
if i let g2 be irr( [tex]\beta[/tex], G),
then deg(g2) = deg( irr( [tex]\beta[/tex], G)) = [G([tex]\beta[/tex]):G]=[K([tex]\beta[/tex]):G]
if we proceed in the same way, deg(gi) can be found to be equal to [K([tex]\theta[/tex]):G] for some root [tex]\theta[/tex] of g.
Next, we observe that since K([tex]\alpha[/tex]) and K([tex]\beta[/tex]) are normal extnesion of K, they split into linear factors for g(x). so K([tex]\alpha[/tex]) = K([tex]\beta[/tex]) (and this in fact implies to K adjoining other roots of g)
so deg(g1)=...=deg(gk)
please tell me if there's anything wrong with it.. this question is a bit too advanced for me
If g(x)[tex]\in[/tex] K[x] and 1< deg(g)=n.
Given that G/K is a normal field ext., if g(x)=g1(x)*...*gk(x)[tex]\in[/tex] G[x],
then deg(g1)=...=deg(gk)
My attempt:
I let G = K adjoins the coefficients of gi's.
Let [tex]\alpha[/tex] be a root of g.
Notice that K [tex]\subseteq[/tex] G [tex]\subseteq[/tex] K( [tex]\alpha[/tex]) = G( [tex]\alpha[/tex])
We can express g(x) = irr( [tex]\alpha[/tex], G) *p(x) for some p(x) [tex]\in[/tex] K[x].
if i let g1 be irr( [tex]\alpha[/tex], G),
then deg(g1) = deg( irr( [tex]\alpha[/tex], G)) = [G([tex]\alpha[/tex]):G]=[K([tex]\alpha[/tex]):G]
Next, we do the same thing again with another root, say [tex]\beta[/tex].
g(x) = irr([tex]\beta[/tex], G) *q(x) for some q(x) [tex]\in[/tex] K[x]
if i let g2 be irr( [tex]\beta[/tex], G),
then deg(g2) = deg( irr( [tex]\beta[/tex], G)) = [G([tex]\beta[/tex]):G]=[K([tex]\beta[/tex]):G]
if we proceed in the same way, deg(gi) can be found to be equal to [K([tex]\theta[/tex]):G] for some root [tex]\theta[/tex] of g.
Next, we observe that since K([tex]\alpha[/tex]) and K([tex]\beta[/tex]) are normal extnesion of K, they split into linear factors for g(x). so K([tex]\alpha[/tex]) = K([tex]\beta[/tex]) (and this in fact implies to K adjoining other roots of g)
so deg(g1)=...=deg(gk)
please tell me if there's anything wrong with it.. this question is a bit too advanced for me