- #1
Jonny6001
- 20
- 0
Hello,
I am interested in the boundary condition effects on a converging-diverging nozzle.
If you have a certain inlet pressure and temperature to a supersonic converging-diverging nozzle which exits into a the outlet pressure, is there a limit to the velocity that you can generate at the nozzle exit?
I mean as the gas velocity speeds up in the diverging section the temperature and pressure reduce. If the local nozzle static pressure gets too low relative to the exit pressure then you over-expand the gas and shocks form inside the nozzle.
Does this mean that the inlet and exit pressures limit the maximum exit gas speed that can be reached? And short of increasing the inlet pressure or decreasing the exit pressure no further velocity increase can be had? Would increasing the inlet temperature with the same inlet pressure increase the available expansion?
Thank you.
I am interested in the boundary condition effects on a converging-diverging nozzle.
If you have a certain inlet pressure and temperature to a supersonic converging-diverging nozzle which exits into a the outlet pressure, is there a limit to the velocity that you can generate at the nozzle exit?
I mean as the gas velocity speeds up in the diverging section the temperature and pressure reduce. If the local nozzle static pressure gets too low relative to the exit pressure then you over-expand the gas and shocks form inside the nozzle.
Does this mean that the inlet and exit pressures limit the maximum exit gas speed that can be reached? And short of increasing the inlet pressure or decreasing the exit pressure no further velocity increase can be had? Would increasing the inlet temperature with the same inlet pressure increase the available expansion?
Thank you.