- #1
IHateMayonnaise
- 94
- 0
[SOLVED] Silly Quantum Physics questions
I'm afraid to say that I have a test in my undergraduate Quantum Physics course tomorrow. I feel prepared for the most part - but I am trying to tie everything we're learning together. In hopes of doing this, I have a couple questions that I would like some feedback on (I will probably have more, and when I do I will update this thread).
1) When two observables commute (say, [tex]\hat{L_z}[/tex] and [tex]\hat{L^2}[/tex]), does this imply that they have common Eigenfunctions?
2) (Tell me if this is right, probably not going to be on the test but I would still like to know) Dirac proposed that particles must have an intrinsic spin incorporated into them so that Quantum Mechanics would not contradict relativity - thus requiring that particles have a finite structure, even though experimental data does not agree. Therefore electrons "orbiting" the nucleus are not in fact transversing space as we know it (with a calculatable velocity), rather they are taking "quantum jumps" - as to not violate relativity and travel faster than the speed of light. This regards spin as a purely quantum-mechanical effect, and there is no macroscopic analogue.
Thanks Yall
IHateMayonnaise
I'm afraid to say that I have a test in my undergraduate Quantum Physics course tomorrow. I feel prepared for the most part - but I am trying to tie everything we're learning together. In hopes of doing this, I have a couple questions that I would like some feedback on (I will probably have more, and when I do I will update this thread).
1) When two observables commute (say, [tex]\hat{L_z}[/tex] and [tex]\hat{L^2}[/tex]), does this imply that they have common Eigenfunctions?
2) (Tell me if this is right, probably not going to be on the test but I would still like to know) Dirac proposed that particles must have an intrinsic spin incorporated into them so that Quantum Mechanics would not contradict relativity - thus requiring that particles have a finite structure, even though experimental data does not agree. Therefore electrons "orbiting" the nucleus are not in fact transversing space as we know it (with a calculatable velocity), rather they are taking "quantum jumps" - as to not violate relativity and travel faster than the speed of light. This regards spin as a purely quantum-mechanical effect, and there is no macroscopic analogue.
Thanks Yall
IHateMayonnaise