- #36
lavinia
Science Advisor
Gold Member
- 3,330
- 718
orion said:Thank you! That clears a lot up. This kind of thing is what I am looking for.
I never said the various definitions aren't equivalent, but I admit that I get heavily invested with one definition and don't step back to see the larger picture. Somehow this all became about definitions, but my original question was whether the derivative operators act in the manifold or in ##\mathbb{R}^n## and this confusion was spawned precisely because of that resource that said that derivatives on manifolds make no sense if the manifold is not a submanifold of ##\mathbb{R}^n##.
Thank you for helping me with this.
What your book probably meant was that you can not compute Newton quotients using points on a manifold because it in general makes no sense to add points or multiply them by numbers. If the manifold is embedded in Euclidean space, then one can use the addition and scalar multiplication in Euclidean space to compute the Newton quotients.
Last edited: