- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
1. Let $1\leq n\in \mathbb{N}$ and $\pi\in \text{Sym}(n)$. For $1\leq k\in \mathbb{N}$ we define $\pi^{-k}:=\left (\pi^n\right )^{-1}$.
Show for all $k,\ell\in \mathbb{Z}$ the equation $\pi^k\circ \pi^{\ell}=\pi^{k+\ell}$. 2. Let $1\leq n\in \mathbb{N}$. Show that $\pi^{n!}=\text{id}$ for all $\pi\in \text{Sym}(n)$.
Do we show both statements using induction? (Wondering)
1. Let $1\leq n\in \mathbb{N}$ and $\pi\in \text{Sym}(n)$. For $1\leq k\in \mathbb{N}$ we define $\pi^{-k}:=\left (\pi^n\right )^{-1}$.
Show for all $k,\ell\in \mathbb{Z}$ the equation $\pi^k\circ \pi^{\ell}=\pi^{k+\ell}$. 2. Let $1\leq n\in \mathbb{N}$. Show that $\pi^{n!}=\text{id}$ for all $\pi\in \text{Sym}(n)$.
Do we show both statements using induction? (Wondering)