- #1
evagelos
- 315
- 0
Suppose the series [tex]\sum a_{n}[/tex] diverges to [tex]+\infty[/tex],
Then if the series does not diverge to infinity it means that the series converges, and
consequently the statement : if [tex]\sum a_{n}[/tex] diverges ,then [tex]\sum b_{n}[/tex] diverges,is equivalent to :
if [tex]\sum b_{n}[/tex] converges ,then [tex]\sum a_{n}[/tex] converges??
Then if the series does not diverge to infinity it means that the series converges, and
consequently the statement : if [tex]\sum a_{n}[/tex] diverges ,then [tex]\sum b_{n}[/tex] diverges,is equivalent to :
if [tex]\sum b_{n}[/tex] converges ,then [tex]\sum a_{n}[/tex] converges??