- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to solve the following problem:
$$u_t=u_{xx}+f(x,t), 0<x<L, t>0$$
$$u(0,t)=u(L,t)=0, t>0$$
$$u(x,0)=0, 0<x<L$$
$$f(0,t)=f(L,t)=0, t>0$$
$$f(x,t)=e^t \sin{(\frac{\pi x }{L})}+2t \sin{(\frac{3 \pi x }{L})}$$
I have done the following:
I write $f$ as a Fourier series:
$$f(x,t)=\sum_{n=1}^{\infty}{F_n(t) \sin{(\frac{n \pi x}{L})}}$$
$$n \neq 1,3: F_n(t)=\frac{2}{L} \int_0^L \sin{(\frac{n \pi x}{L})}dx=0$$
$$F_1(t)=\frac{2}{L} \int_0^L (e^t \sin{(\frac{ \pi x}{L})}+2t \sin{(\frac{3 \pi x}{L})} ) \sin{(\frac{\pi x}{L})}dx=e^t$$
$$F_3(t)=\frac{2}{L} \int_0^L (e^t \sin{(\frac{ \pi x}{L})}+2t \sin{(\frac{3 \pi x}{L})} ) \sin{(\frac{3 \pi x}{L})}dx=2t$$
So $$f(x,t)=F_1(t) \sin{(\frac{\pi x}{L})}+F_3(t) \sin{(\frac{3 \pi x}{L})}=e^t \sin{(\frac{\pi x}{L})}+2t \sin{(\frac{3 \pi x}{L})}$$
I write $u$ as a Fourier series:
$$u(x,t)=\sum_{n=1}^{\infty}{T_n(t) \sin{(\frac{n \pi x}{L})}}$$
$$u_t=\sum_{n=1}^{\infty}{T_n'(t) \sin{(\frac{n \pi x}{L})}}$$
$$u_{xx}=\sum_{n=1}^{\infty}{-\frac{n^2 \pi^2}{L^2}T_n(t) \sin{(\frac{n \pi x}{L})}}$$
Replacing at the problem, we get:
$$\sum_{n=1}^{\infty}{T_n'(t) \sin{(\frac{n \pi x}{L})}}=\sum_{n=1}^{\infty}{(-\frac{n^2 \pi^2}{L^2}T_n(t) +F_n(t))\sin{(\frac{n \pi x}{L})}}$$
$$T_n'(t) + \frac{n^2 \pi^2}{L^2}T_n(t)=F_n(t)$$
How can I continue??
Do I have to find separately $T_1$, $T_3$ and $T_n \text{ for } n\neq 1,3$?? (Wondering)
I have to solve the following problem:
$$u_t=u_{xx}+f(x,t), 0<x<L, t>0$$
$$u(0,t)=u(L,t)=0, t>0$$
$$u(x,0)=0, 0<x<L$$
$$f(0,t)=f(L,t)=0, t>0$$
$$f(x,t)=e^t \sin{(\frac{\pi x }{L})}+2t \sin{(\frac{3 \pi x }{L})}$$
I have done the following:
I write $f$ as a Fourier series:
$$f(x,t)=\sum_{n=1}^{\infty}{F_n(t) \sin{(\frac{n \pi x}{L})}}$$
$$n \neq 1,3: F_n(t)=\frac{2}{L} \int_0^L \sin{(\frac{n \pi x}{L})}dx=0$$
$$F_1(t)=\frac{2}{L} \int_0^L (e^t \sin{(\frac{ \pi x}{L})}+2t \sin{(\frac{3 \pi x}{L})} ) \sin{(\frac{\pi x}{L})}dx=e^t$$
$$F_3(t)=\frac{2}{L} \int_0^L (e^t \sin{(\frac{ \pi x}{L})}+2t \sin{(\frac{3 \pi x}{L})} ) \sin{(\frac{3 \pi x}{L})}dx=2t$$
So $$f(x,t)=F_1(t) \sin{(\frac{\pi x}{L})}+F_3(t) \sin{(\frac{3 \pi x}{L})}=e^t \sin{(\frac{\pi x}{L})}+2t \sin{(\frac{3 \pi x}{L})}$$
I write $u$ as a Fourier series:
$$u(x,t)=\sum_{n=1}^{\infty}{T_n(t) \sin{(\frac{n \pi x}{L})}}$$
$$u_t=\sum_{n=1}^{\infty}{T_n'(t) \sin{(\frac{n \pi x}{L})}}$$
$$u_{xx}=\sum_{n=1}^{\infty}{-\frac{n^2 \pi^2}{L^2}T_n(t) \sin{(\frac{n \pi x}{L})}}$$
Replacing at the problem, we get:
$$\sum_{n=1}^{\infty}{T_n'(t) \sin{(\frac{n \pi x}{L})}}=\sum_{n=1}^{\infty}{(-\frac{n^2 \pi^2}{L^2}T_n(t) +F_n(t))\sin{(\frac{n \pi x}{L})}}$$
$$T_n'(t) + \frac{n^2 \pi^2}{L^2}T_n(t)=F_n(t)$$
How can I continue??
Do I have to find separately $T_1$, $T_3$ and $T_n \text{ for } n\neq 1,3$?? (Wondering)