- #1
AxiomOfChoice
- 533
- 1
If [itex]a[/itex] and [itex]b[/itex] are positive and [itex]a < b[/itex], do we have
[tex]
(0 < x < 1) \Rightarrow \frac{1}{x^b} > \frac{1}{x^a}
[/tex]
and
[tex]
(1 < x < \infty) \Rightarrow \frac{1}{x^a} > \frac{1}{x^b}
[/tex]
?
[tex]
(0 < x < 1) \Rightarrow \frac{1}{x^b} > \frac{1}{x^a}
[/tex]
and
[tex]
(1 < x < \infty) \Rightarrow \frac{1}{x^a} > \frac{1}{x^b}
[/tex]
?
Last edited: