- #1
greypilgrim
- 548
- 38
Hi.
I remember having learnt in school that if you'd like to verify that bodies of different mass accelerate the same in free fall, but don't have a vacuum available, the bodies should be of same size and shape (e.g. spheres).
This made sense to me back then because drag should be the same then. But if I write down Newton's 2nd law with gravitational forces and drag and divide by the mass, mass doesn't go away completely, but is still there in "drag/mass", giving rise to different accelerations.
Am I doing something wrong, or do you really need objects of different size (or shape) for them to accelerate the same?
I remember having learnt in school that if you'd like to verify that bodies of different mass accelerate the same in free fall, but don't have a vacuum available, the bodies should be of same size and shape (e.g. spheres).
This made sense to me back then because drag should be the same then. But if I write down Newton's 2nd law with gravitational forces and drag and divide by the mass, mass doesn't go away completely, but is still there in "drag/mass", giving rise to different accelerations.
Am I doing something wrong, or do you really need objects of different size (or shape) for them to accelerate the same?