- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
I want to check if the following integrals converge or diverge.
1 . $\displaystyle{\int_0^{+\infty}t^2e^{-t^2}\, dt}$
2. $\displaystyle{\int_e^{+\infty}\frac{1}{t^n\ln t}\, dt, \ n\in \{1,2\}}$
3. $\displaystyle{\int_0^{+\infty}\frac{\sin t}{\sqrt{t}}\, dt}$
4. $\displaystyle{\int_0^{+\infty}e^{-t^2}\, dt}$
5. $\displaystyle{\int_1^{+\infty}\frac{(\ln t)^{\beta}}{t^{\alpha}}\, dt, \alpha ,\beta\in \mathbb{R}}$
6. $\displaystyle{\int_0^{+\infty}\frac{t\ln t}{(1-t^2)^2}\, dt}$
7. $\displaystyle{\int_1^{+\infty}\frac{|\sin t|}{t}\, dt}$
8. $\displaystyle{\int_0^{+\infty}t^ne^{-at}\, dt, \ a>0}$
9. $\displaystyle{\int_1^{+\infty}\frac{|\cos t|}{t^2}\, dt}$ Let's consider first the three first integrals...
For the integral 1 I have done the following:
It holds that $\left |t^2e^{-t^2}\right |\leq te^{-t}$ and that $\displaystyle{\int_0^{+\infty}te^{-t}\, dt=1<\infty}$. Therefore also the integral $\displaystyle{\int_0^{+\infty}t^2e^{-t^2}\, dt}$ converges. For question 2 the integral diverges, or not?So wehave to take a smaller integral that can be computed to show that the smaller one diverges and so also the origonal integral, right? But what bound do we take? For question 3 I thought to take $\left |\frac{\sin t}{\sqrt{t}}\right |=\frac{|\sin t|}{|\sqrt{t}|}\leq \frac{t}{\sqrt{t}}=\sqrt{t}$ but the integral of $\sqrt{t}$ diverges. The same holds if we take $|\sin t|<1$ instead of $|\sin t|<t$. Which bound do we take here? :unsure:
I want to check if the following integrals converge or diverge.
1 . $\displaystyle{\int_0^{+\infty}t^2e^{-t^2}\, dt}$
2. $\displaystyle{\int_e^{+\infty}\frac{1}{t^n\ln t}\, dt, \ n\in \{1,2\}}$
3. $\displaystyle{\int_0^{+\infty}\frac{\sin t}{\sqrt{t}}\, dt}$
4. $\displaystyle{\int_0^{+\infty}e^{-t^2}\, dt}$
5. $\displaystyle{\int_1^{+\infty}\frac{(\ln t)^{\beta}}{t^{\alpha}}\, dt, \alpha ,\beta\in \mathbb{R}}$
6. $\displaystyle{\int_0^{+\infty}\frac{t\ln t}{(1-t^2)^2}\, dt}$
7. $\displaystyle{\int_1^{+\infty}\frac{|\sin t|}{t}\, dt}$
8. $\displaystyle{\int_0^{+\infty}t^ne^{-at}\, dt, \ a>0}$
9. $\displaystyle{\int_1^{+\infty}\frac{|\cos t|}{t^2}\, dt}$ Let's consider first the three first integrals...
For the integral 1 I have done the following:
It holds that $\left |t^2e^{-t^2}\right |\leq te^{-t}$ and that $\displaystyle{\int_0^{+\infty}te^{-t}\, dt=1<\infty}$. Therefore also the integral $\displaystyle{\int_0^{+\infty}t^2e^{-t^2}\, dt}$ converges. For question 2 the integral diverges, or not?So wehave to take a smaller integral that can be computed to show that the smaller one diverges and so also the origonal integral, right? But what bound do we take? For question 3 I thought to take $\left |\frac{\sin t}{\sqrt{t}}\right |=\frac{|\sin t|}{|\sqrt{t}|}\leq \frac{t}{\sqrt{t}}=\sqrt{t}$ but the integral of $\sqrt{t}$ diverges. The same holds if we take $|\sin t|<1$ instead of $|\sin t|<t$. Which bound do we take here? :unsure: