- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
A two-dimensional fluid stream of thickness $S$ and velocity $c$ (evenly distributed through the thickness of the stream) falls on a stationary plate and gets separated. Calculate the ratio of thicknesses $\frac{S_1}{S_2}$ as a function of the angle $\phi$.
View attachment 4421In my notes there is this solution:
Continuity equation:
Let $c_1$, $c_2$ the velocities of the sections 1, 2
$$0: \overrightarrow{u}=c\hat{e} \ \ , \ \ \overrightarrow{n}_0=-\hat{e}=-(-\sin \phi \hat{i}+\cos \phi \hat{j}) \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_0=-c \\ 1: \overrightarrow{u}=c_1 \overrightarrow{n}_1=c_1 \hat{i} \ \ , \ \ \overrightarrow{n}_1=\hat{i} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_1=c_1 \\ 2: \overrightarrow{u}=c_2 \overrightarrow{n}_2=-c_2\hat{i} \ \ , \ \ \overrightarrow{n}_2=-\hat{i} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_2=c_2$$
$$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c \cdot (S \cdot 1)+c_1 \cdot (S_1 \cdot 1)+c_2 \cdot (S_2 \cdot 1)=0 \Rightarrow cS=c_1S+c_2S_2 \ \ \ \ \ (1) $$
Conservation of energy $\Rightarrow $ Bernoulli equation
$$\frac{1}{2}|\overrightarrow{u}|^2+\frac{p}{\rho_ 0}=\text{ constant along a streamline }$$
$$0 \rightarrow 1 : \frac{1}{2}c^2+\frac{p_a}{\\rho_0}=\frac{1}{2}c_1^ 2+\frac{p_a}{\rho_0} \Rightarrow c_1=c \\ 0 \rightarrow 2 : \frac{1}{2}c^2+\frac{p_a}{\\rho_0}=\frac{1}{2}c_2^ 2+\frac{p_a}{\rho_0} \Rightarrow c_2=c \\ \Rightarrow c_1=c_2=c \ \ \ \ \ (2)$$
$$(1) \wedge (2) \Rightarrow S=S_1+S_2 \ \ \ \ \ (3)$$
$$\overrightarrow{F}_{W_0}=-\int_{\partial_{W_1}}p \overrightarrow{n} dA-\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA$$
$$\int_{\partial_{W_1}}p \overrightarrow{n} dA=p_a \int_{\partial{W_1}}\overrightarrow{n}dA=0$$
$$\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA=\rho_0 (c \hat{e}(-c)S+c_1 \hat{i}c_1S_1+(-c_2 \hat{i})c_2S_2)=(\rho_0c^2S\cos \phi +\rho_0 c_1^2S_1-\rho_0c_2^2S_2)\hat{i}-\rho c^2S\sin \phi \hat{j}=-\overrightarrow{F}_{W_0}$$
$$F_{W_0, x}=-\rho_0c^2(S\cos \phi +S_1-S_2) \ \ \ \ \ (4a) \\ F_{W_0, y}=\rho c^2 S \sin \phi \ \ \ \ \ (4b)$$
Since the fluid is ideal we have that $$F_{W_0, x}=0 \Rightarrow S_2-S_1=S \cos \phi \ \ \ \ \ (5)$$
$$(3) \wedge (5) \Rightarrow \\S_1=\frac{S}{2}(1+\cos \phi) \\ S_2=\frac{S}{2}(1-\cos \phi) \\ \Rightarrow \frac{S_2}{S_1}=\frac{1-\cos \phi}{1+\cos \phi}$$
Do we calculate the integral $$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c \cdot (S \cdot 1)+c_1 \cdot (S_1 \cdot 1)+c_2 \cdot (S_2 \cdot 1)=0$$ as followed?
$$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow \int_{(0)} \overrightarrow{u} \cdot \overrightarrow{n}dA+\int_{(1)}\overrightarrow{u} \cdot \overrightarrow{n}dA+\int_{(2)}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c\int_{(0)} dA+c_1 \int_{(1)}dA+c_2 \int_{(2)}dA=0$$
To find the integral $\int_{(0)} dA$ do we take a part of the section $(0)$ and calculate its area?? (Wondering)
A two-dimensional fluid stream of thickness $S$ and velocity $c$ (evenly distributed through the thickness of the stream) falls on a stationary plate and gets separated. Calculate the ratio of thicknesses $\frac{S_1}{S_2}$ as a function of the angle $\phi$.
View attachment 4421In my notes there is this solution:
Continuity equation:
Let $c_1$, $c_2$ the velocities of the sections 1, 2
$$0: \overrightarrow{u}=c\hat{e} \ \ , \ \ \overrightarrow{n}_0=-\hat{e}=-(-\sin \phi \hat{i}+\cos \phi \hat{j}) \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_0=-c \\ 1: \overrightarrow{u}=c_1 \overrightarrow{n}_1=c_1 \hat{i} \ \ , \ \ \overrightarrow{n}_1=\hat{i} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_1=c_1 \\ 2: \overrightarrow{u}=c_2 \overrightarrow{n}_2=-c_2\hat{i} \ \ , \ \ \overrightarrow{n}_2=-\hat{i} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{n}_2=c_2$$
$$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c \cdot (S \cdot 1)+c_1 \cdot (S_1 \cdot 1)+c_2 \cdot (S_2 \cdot 1)=0 \Rightarrow cS=c_1S+c_2S_2 \ \ \ \ \ (1) $$
Conservation of energy $\Rightarrow $ Bernoulli equation
$$\frac{1}{2}|\overrightarrow{u}|^2+\frac{p}{\rho_ 0}=\text{ constant along a streamline }$$
$$0 \rightarrow 1 : \frac{1}{2}c^2+\frac{p_a}{\\rho_0}=\frac{1}{2}c_1^ 2+\frac{p_a}{\rho_0} \Rightarrow c_1=c \\ 0 \rightarrow 2 : \frac{1}{2}c^2+\frac{p_a}{\\rho_0}=\frac{1}{2}c_2^ 2+\frac{p_a}{\rho_0} \Rightarrow c_2=c \\ \Rightarrow c_1=c_2=c \ \ \ \ \ (2)$$
$$(1) \wedge (2) \Rightarrow S=S_1+S_2 \ \ \ \ \ (3)$$
$$\overrightarrow{F}_{W_0}=-\int_{\partial_{W_1}}p \overrightarrow{n} dA-\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA$$
$$\int_{\partial_{W_1}}p \overrightarrow{n} dA=p_a \int_{\partial{W_1}}\overrightarrow{n}dA=0$$
$$\int_{\partial{W_1}}\rho \overrightarrow{u} (\overrightarrow{u} \cdot \overrightarrow{n})dA=\rho_0 (c \hat{e}(-c)S+c_1 \hat{i}c_1S_1+(-c_2 \hat{i})c_2S_2)=(\rho_0c^2S\cos \phi +\rho_0 c_1^2S_1-\rho_0c_2^2S_2)\hat{i}-\rho c^2S\sin \phi \hat{j}=-\overrightarrow{F}_{W_0}$$
$$F_{W_0, x}=-\rho_0c^2(S\cos \phi +S_1-S_2) \ \ \ \ \ (4a) \\ F_{W_0, y}=\rho c^2 S \sin \phi \ \ \ \ \ (4b)$$
Since the fluid is ideal we have that $$F_{W_0, x}=0 \Rightarrow S_2-S_1=S \cos \phi \ \ \ \ \ (5)$$
$$(3) \wedge (5) \Rightarrow \\S_1=\frac{S}{2}(1+\cos \phi) \\ S_2=\frac{S}{2}(1-\cos \phi) \\ \Rightarrow \frac{S_2}{S_1}=\frac{1-\cos \phi}{1+\cos \phi}$$
Do we calculate the integral $$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c \cdot (S \cdot 1)+c_1 \cdot (S_1 \cdot 1)+c_2 \cdot (S_2 \cdot 1)=0$$ as followed?
$$\int_{\partial{W_1}}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow \int_{(0)} \overrightarrow{u} \cdot \overrightarrow{n}dA+\int_{(1)}\overrightarrow{u} \cdot \overrightarrow{n}dA+\int_{(2)}\overrightarrow{u} \cdot \overrightarrow{n}dA=0 \Rightarrow -c\int_{(0)} dA+c_1 \int_{(1)}dA+c_2 \int_{(2)}dA=0$$
To find the integral $\int_{(0)} dA$ do we take a part of the section $(0)$ and calculate its area?? (Wondering)