- #1
Anthony111
- 6
- 0
Sorry for a basic question but I keep reading conflicting information on this.
So, I know that there are distant galaxies that are being carried by the expansion of space faster than the speed of light relative to us. But were these objects actually receding >c when the light we are seeing was emitted, or are we extrapolating their redshift now given their current position in the observable universe?
As I understand it, it is possible for light to reach us from beyond the Hubble horizon due to the Hubble parameter slowing down over time. Allowing light to pass from a point in space expanding >c to a point expanding <c, thus it being able to eventually reach us. (I think that's how it works)
But I would have thought that would be a narrow band and couldn't account for us directly observing galaxies receding at 3c could it?
So, I know that there are distant galaxies that are being carried by the expansion of space faster than the speed of light relative to us. But were these objects actually receding >c when the light we are seeing was emitted, or are we extrapolating their redshift now given their current position in the observable universe?
As I understand it, it is possible for light to reach us from beyond the Hubble horizon due to the Hubble parameter slowing down over time. Allowing light to pass from a point in space expanding >c to a point expanding <c, thus it being able to eventually reach us. (I think that's how it works)
But I would have thought that would be a narrow band and couldn't account for us directly observing galaxies receding at 3c could it?