- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the following exercise:
I am looking at the following exercise:
- Detremine the extrema of the function $f(x,y)=x^2y$ subject to $3x+2y=9$.
- Prove also the second order condition. What kind is the extremum?
- Is this an extremum of the whole function $f(x,y)$?
- Draw the contour lines of $f(x,y)$ and the constraint.
- We can solve the constraint for one variable: \begin{equation*}3x+2y=9 \Rightarrow 3x=9-2y \Rightarrow x=\frac{9-2y}{3} \Rightarrow x=3-\frac{2}{3}y\end{equation*}
Therefore, we get a function of one variable:
\begin{equation*}h(y)=f\left (3-\frac{2}{3}y, y\right )=\left (3-\frac{2}{3}y\right )^2\cdot y=\left (9-2\cdot 3\cdot \frac{2}{3}y+\frac{4}{9}y^2\right )\cdot y=\left (9-4y+\frac{4}{9}y^2\right )\cdot y=9y-4y^2+\frac{4}{9}y^3\end{equation*}
So, we are looking for the extrema of $h(y)$ using the first derivative:
\begin{equation*}h'(y)=9-2\cdot 4y+3\cdot \frac{4}{9}y^2=9-8y+\frac{4}{3}y^2\end{equation*}
The critical points of $h(y)=f\left (3-\frac{2}{3}y, y\right )$ are $y=\frac{3}{2}$ and $y=\frac{9}{2}$.
Therefore, the critical points of $f(x,y)$ are the following:
$\left (3-\frac{2}{3}\cdot \frac{3}{2}, \frac{3}{2}\right )=\left (3-1, \frac{3}{2}\right )=\left (2, \frac{3}{2}\right )$ and $\left (3-\frac{2}{3}\cdot \frac{9}{2}, \frac{9}{2}\right )=\left (3-3, \frac{9}{2}\right )=\left (0, \frac{9}{2}\right )$. The second derivative of $h(y)$ is $h''(y)=-8+\frac{8}{3}y$.
We have that $h''\left (\frac{3}{2}\right )=-8+\frac{8}{3}\cdot \frac{3}{2}=-8+4=-4<0$ and $h''\left (\frac{9}{2}\right )=-8+\frac{8}{3}\cdot \frac{9}{2}=-8+12=4>0$.
That means that $h$ has a maximum at $y=\frac{3}{2}$ and a minimum at $y=\frac{9}{2}$.
From that it implies that $f(x,y)$ has a local maximum at $\left (2, \frac{3}{2}\right )$ and a local minimum $\left (0, \frac{9}{2}\right )$, right? (Wondering)
- The second order condition is the following, or not? (Wondering)
$(x_0, y_0)$ is a- local maximum, if \begin{equation*}F_{xx}(x_0, y_0)<0 \ \text{ und } \ F_{xx}(x_0, y_0)F_{yy}(x_0, y_0)-\left (F_{xy}(x_0, y_0)\right )^2>0\end{equation*}
- local minimum, if\begin{equation*}F_{xx}(x_0, y_0)>0 \ \text{ und } \ F_{xx}(x_0, y_0)F_{yy}(x_0, y_0)-\left (F_{xy}(x_0, y_0)\right )^2>0\end{equation*}
- saddle point, if \begin{equation*}F_{xx}(x_0, y_0)F_{yy}(x_0, y_0)-\left (F_{xy}(x_0, y_0)\right )^2<0\end{equation*}
- local maximum, local minimum or saddle point, if \begin{equation*}F_{xx}(x_0, y_0)F_{yy}(x_0, y_0)-\left (F_{xy}(x_0, y_0)\right )^2=0\end{equation*}
\end{enumerate}
\begin{equation*}f_{xx}\left (2, \frac{3}{2}\right )=2\cdot \frac{3}{2}=3 , f_{yy}\left (2, \frac{3}{2}\right )=0 , f_{xy}\left (2, \frac{3}{2}\right )=f_{yx}\left (2, \frac{3}{2}\right )=2\cdot 2=4\end{equation*}
So, we get \begin{equation*}f_{xx}\left (2, \frac{3}{2}\right )f_{yy}\left (2, \frac{3}{2}\right )-\left (f_{xy}\left (2, \frac{3}{2}\right )\right )^2=3\cdot 0-4^2=-16<0\end{equation*}
That means that at $\left (2, \frac{3}{2}\right )$ we have a saddle point. At $\left (0, \frac{9}{2}\right )$ we have the following:
\begin{equation*}f_{xx}\left (0, \frac{9}{2}\right )=2\cdot \frac{9}{2}=9 , f_{yy}\left (0, \frac{9}{2}\right )=0 , f_{xy}\left (0, \frac{9}{2}\right )=f_{yx}\left (0, \frac{9}{2}\right )=2\cdot 0=0\end{equation*}
We have that \begin{equation*}f_{xx}\left (0, \frac{9}{2}\right )f_{yy}\left (0, \frac{9}{2}\right )-\left (f_{xy}\left (0, \frac{9}{2}\right )\right )^2=9\cdot 0-0^2=0\end{equation*}
So, $\left (0, \frac{9}{2}\right )$ is either a local maximum or a local minimum or a saddle point. We don't get the same result as in the previous question about the kinf of the extrema because at the second order condition we don't use the constraint $3x+2y=9$, right? (Wondering) - That means that the function has only extrema under the constraint $3x+2y=9$. The extrema that we found are not extrema of the whole function $f(x,y)$, right? (Wondering)
- We see the contour lines $f(x,y)=c$ for $c\in \{1,2,3,4,5\}$ and the constraint in the following graph:
[DESMOS=-5,5,-4,10]x^2y=1;x^2y=2;x^2y=3;x^2y=4;x^2y=5;3x+2y=9[/DESMOS]
What do we get from that graph? Can we get from there the extrema? (Wondering)