- #1
alexmahone
- 304
- 0
Prove: if $\frac{a_n}{b_n}\to L$, $b_n\neq 0$ for any $n$, and $b_n\to 0$, then $a_n\to 0$. ($L$ represents a finite number, not $\infty$.)
My working:
Given $\epsilon>0$,
$\left|\frac{a_n}{b_n}-L\right|<\epsilon$ and $|b_n|<\epsilon$
How do I proceed?
---------- Post added at 11:43 AM ---------- Previous post was at 10:55 AM ----------
Let me give it a shot.
$\left|\frac{a_n}{b_n}\right|=\left|\frac{a_n}{b_n}-L+L\right|\le\left|\frac{a_n}{b_n}-L\right|+|L|<\epsilon+|L|$
$|a_n|<|b_n|(\epsilon+|L|)<\epsilon(\epsilon+|L|)<\epsilon(1+|L|)$
since we may assume $\epsilon<1$
My working:
Given $\epsilon>0$,
$\left|\frac{a_n}{b_n}-L\right|<\epsilon$ and $|b_n|<\epsilon$
How do I proceed?
---------- Post added at 11:43 AM ---------- Previous post was at 10:55 AM ----------
Let me give it a shot.
$\left|\frac{a_n}{b_n}\right|=\left|\frac{a_n}{b_n}-L+L\right|\le\left|\frac{a_n}{b_n}-L\right|+|L|<\epsilon+|L|$
$|a_n|<|b_n|(\epsilon+|L|)<\epsilon(\epsilon+|L|)<\epsilon(1+|L|)$
since we may assume $\epsilon<1$
Last edited: