- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $G$ a multiplicative abelian group. Show with induction that for each positive integer $n$, $(a \cdot b)^n=a^n \cdot b^n, \forall a,b \in G$. Then,show that the same relation stands for $n \leq 0$.
That's what I have tried:
For $n=1$: $(a \cdot b)^1=a^1 \cdot b^1 \checkmark$
Suppose that the relation stands for $n=k$, $(a \cdot b)^k=a^k \cdot b^k$
We want to show that the relation stand for $n=k+1$.
$$(a \cdot b)^{k+1}=a^{k+1} \cdot b^{k+1} \Rightarrow (a \cdot b)^{k} \cdot (a \cdot b)=a^k \cdot a \cdot b^k \cdot b \Rightarrow a^k \cdot b^k \cdot a \cdot b= a^k \cdot a \cdot b^k \cdot b \Rightarrow b^k \cdot a= a \cdot b^k \Rightarrow a \cdot b^k=a \cdot b^k \checkmark $$
Now we have shown that $(a \cdot b)^n=a^n \cdot b^n, n \in \mathbb{Z}^{+} $
For $n \leq 0$: $n=-k, k\in \mathbb{Z}^{+}$
$$(a \cdot b)^n=a^n \cdot b^n \Rightarrow (a \cdot b)^{-k}=a^{-k} \cdot b^{-k} \Rightarrow ((a \cdot b)^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1} \cdot a^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1})^k \cdot (a^{-1})^k= (a^{-1})^k \cdot (b^{-1})^k \Rightarrow (a^{-1})^k \cdot (b^{-1})^k=(a^{-1})^k \cdot (b^{-1})^k \checkmark$$
For $n=0$: $(a \cdot b)^0=a^0 \cdot b^0 \Rightarrow 1=1 \checkmark$
Could you tell me if it is right??
Let $G$ a multiplicative abelian group. Show with induction that for each positive integer $n$, $(a \cdot b)^n=a^n \cdot b^n, \forall a,b \in G$. Then,show that the same relation stands for $n \leq 0$.
That's what I have tried:
For $n=1$: $(a \cdot b)^1=a^1 \cdot b^1 \checkmark$
Suppose that the relation stands for $n=k$, $(a \cdot b)^k=a^k \cdot b^k$
We want to show that the relation stand for $n=k+1$.
$$(a \cdot b)^{k+1}=a^{k+1} \cdot b^{k+1} \Rightarrow (a \cdot b)^{k} \cdot (a \cdot b)=a^k \cdot a \cdot b^k \cdot b \Rightarrow a^k \cdot b^k \cdot a \cdot b= a^k \cdot a \cdot b^k \cdot b \Rightarrow b^k \cdot a= a \cdot b^k \Rightarrow a \cdot b^k=a \cdot b^k \checkmark $$
Now we have shown that $(a \cdot b)^n=a^n \cdot b^n, n \in \mathbb{Z}^{+} $
For $n \leq 0$: $n=-k, k\in \mathbb{Z}^{+}$
$$(a \cdot b)^n=a^n \cdot b^n \Rightarrow (a \cdot b)^{-k}=a^{-k} \cdot b^{-k} \Rightarrow ((a \cdot b)^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1} \cdot a^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1})^k \cdot (a^{-1})^k= (a^{-1})^k \cdot (b^{-1})^k \Rightarrow (a^{-1})^k \cdot (b^{-1})^k=(a^{-1})^k \cdot (b^{-1})^k \checkmark$$
For $n=0$: $(a \cdot b)^0=a^0 \cdot b^0 \Rightarrow 1=1 \checkmark$
Could you tell me if it is right??