- #1
e12514
- 30
- 0
I have a cauchy sequence (f_n) in the space of functions on [0,1] which are infinitely differentiable, C^oo ([0,1]) = INTERSECTION C^k ([0,1]), k from 0 to oo, with the metric d(f,g) = SUM 2^-i * ||f-g||_C^i / ( 1 + ||f-g||_C^i ), i from 0 to oo
If we assume that we do not know whether ( C^oo, d ) is complete or not from the beginning, but that we know ( C^k, ||.|| ) are Banach spaces for all k,
is it valid to claim that (f_n) is cauchy in C^k ([0,1]) for all k?
reason:
(f_n) cauchy in C^oo
for all epsilon > 0 there exists N(depending on epsilon) in the set of natural numbers such that
m,n >= N => d(f_m, f_n) < epsilon
so there exists N s.t.
epsilon > d(f_m, f_n) = SUM 2^-i * ||f_m - f_n||_C^i / ( 1 + ||f_m - f_n||_C^i ), i from 0 to oo
i.e.
epsilon > SUM 2^-i * [ 1 / ( 1 + ||f_m - f_n||_C^i ) - 1 ] , i from 0 to oo
and so we can make the above sum as arbitrarily small as we desire,
therefore we can make ||f_m - f_n||_C^i as arbitrarily small as we desire since this is the only "variable" in the above sum.
i.e. ||f_m - f_n||_C^i < epsilon_i for all i
and hence (f_n) is cauchy in C^k for all k
Also with the same situation as before but this time I have a convergent sequence in C^oo, i.e. (f_n) -> f in C^oo
Is it valid to claim that (f_n) is convergent in C^k for all k?
reason:
with exactly the same method as before except replace "f_m, f_n" by "f_n and f"
or
(f_n) -> f in C^oo means
f_n - f -> 0, i.e.
d(f_n, f) -> 0, i.e.
SUM 2^-i * ||f_n - f||_C^i / ( 1 + ||f_n - f||_C^i ), i from 0 to oo, goes to zero, i.e.
||f_n - f||_C^i -> 0 for all i since 2^-i > 0 so the other part of the numerator needs to be zero
i.e. (f_n) -> f in C^k for all k
If we assume that we do not know whether ( C^oo, d ) is complete or not from the beginning, but that we know ( C^k, ||.|| ) are Banach spaces for all k,
is it valid to claim that (f_n) is cauchy in C^k ([0,1]) for all k?
reason:
(f_n) cauchy in C^oo
for all epsilon > 0 there exists N(depending on epsilon) in the set of natural numbers such that
m,n >= N => d(f_m, f_n) < epsilon
so there exists N s.t.
epsilon > d(f_m, f_n) = SUM 2^-i * ||f_m - f_n||_C^i / ( 1 + ||f_m - f_n||_C^i ), i from 0 to oo
i.e.
epsilon > SUM 2^-i * [ 1 / ( 1 + ||f_m - f_n||_C^i ) - 1 ] , i from 0 to oo
and so we can make the above sum as arbitrarily small as we desire,
therefore we can make ||f_m - f_n||_C^i as arbitrarily small as we desire since this is the only "variable" in the above sum.
i.e. ||f_m - f_n||_C^i < epsilon_i for all i
and hence (f_n) is cauchy in C^k for all k
Also with the same situation as before but this time I have a convergent sequence in C^oo, i.e. (f_n) -> f in C^oo
Is it valid to claim that (f_n) is convergent in C^k for all k?
reason:
with exactly the same method as before except replace "f_m, f_n" by "f_n and f"
or
(f_n) -> f in C^oo means
f_n - f -> 0, i.e.
d(f_n, f) -> 0, i.e.
SUM 2^-i * ||f_n - f||_C^i / ( 1 + ||f_n - f||_C^i ), i from 0 to oo, goes to zero, i.e.
||f_n - f||_C^i -> 0 for all i since 2^-i > 0 so the other part of the numerator needs to be zero
i.e. (f_n) -> f in C^k for all k
Last edited: