- #1
chwala
Gold Member
- 2,745
- 387
When you have a polynomial say ax^4+bx^3+cx^2+dx+e where a,b,c,d and e are constants and divide this by a polynomial say ax+b it follows that the quotient will be a cubic polynomial. Assuming that a remainder exists, then the remainder will be a constant because in my reasoning, the remainder should be 1 degree less than the divisor ax+b.
My question is supposing you have a polynomial of degree 7 and divide this by a cubic divisor of degree 3 then it follows that the quotient will be quartic of degree 4, does it follow that the remainder if it exists will be quadratic of degree 2? I need insight on this.
My question is supposing you have a polynomial of degree 7 and divide this by a cubic divisor of degree 3 then it follows that the quotient will be quartic of degree 4, does it follow that the remainder if it exists will be quadratic of degree 2? I need insight on this.