Does every control system contain an integrator?

In summary, an integrator is a special part of state space representation that converts the derivative back to the variable. It is often used in control systems to achieve zero DC error.
  • #1
PainterGuy
940
70
Hi,

Let's call the box in green a plant. Does every plant consist of an integrator? It has to because when [itex]\overset{\cdot }{x}(t)[/itex] passes through the green box, it becomes x(t). It's an operation of integrator; integrator converts the derivative back to the variable. Could you please guide me?

1620010372182.png
 
Engineering news on Phys.org
  • #2
You designate an integrator 'the plant' and then you are surprised that a 'plant' integrates?

##\ ##
 
  • Like
Likes PainterGuy
  • #3
No, not every control system has an integrator. But yours does.

However, most control systems contain an integrator. That's how you make it achieve zero DC error.
 
  • Like
Likes PainterGuy and AlexCaledin
  • #4
It seems to me that a control system without an integrator will feed back the actual signal, so becomes a negative feedback system, which has different properties.
 
  • Skeptical
Likes DaveE
  • #5
tech99 said:
It seems to me that a control system without an integrator will feed back the actual signal, so becomes a negative feedback system, which has different properties.
If you want something nearly universal about all control systems, negative feedback is the closest you will get. Seldom zero feedback and never net positive feedback.

But many control systems have negative feedback and proportional output. No integrator. For example, James Watts' flyball governor.

1620071812072.png
 
  • Like
Likes PainterGuy
  • #6
PainterGuy said:
Hi,

Let's call the box in green a plant. Does every plant consist of an integrator? It has to because when [itex]\overset{\cdot }{x}(t)[/itex] passes through the green box, it becomes x(t). It's an operation of integrator; integrator converts the derivative back to the variable. Could you please guide me?

View attachment 282402
Sorry, I miss read your question. No, not every plant acts as an integrator, in fact that's common in my experience. Most plants are proportional. The integrator is normally applied as part of the control system.

However, this partly depends on how you define the inputs and outputs. So, for example, a motor may have speed proportional to applied voltage, but position is the integral of applied voltage. So, same motor, but different behavior depending on what you want to control.
 
  • Like
Likes PainterGuy, eq1 and Merlin3189
  • #7
Thank you, everyone!

I don't think my question was phrased properly. Let me try again.

BvU said:
You designate an integrator 'the plant' and then you are surprised that a 'plant' integrates?

##\ ##
It's not me who designated an integrator as the plant rather this is how the state representation is shown. Please see the figure below. The representation suggests that an integrator is always there present and when [itex]\overset{\cdot }{x}(t)[/itex] passes through it, it becomes x. In other words, an integrator is a natural part of state space representation. Where am I going wrong?

1620097769592.png

https://en.wikipedia.org/wiki/State-space_representation#Linear_systems
 
  • #8
PainterGuy said:
Thank you, everyone!

I don't think my question was phrased properly. Let me try again.It's not me who designated an integrator as the plant rather this is how the state representation is shown. Please see the figure below. The representation suggests that an integrator is always there present and when [itex]\overset{\cdot }{x}(t)[/itex] passes through it, it becomes x. In other words, an integrator is a natural part of state space representation. Where am I going wrong?

View attachment 282469
https://en.wikipedia.org/wiki/State-space_representation#Linear_systems
I suspect your question is bordering on semantics. A system with no integrators (or derivatives) can be described in the state space format, such as:

$$ \begin{align}
&\dot x = Ax + bu \
&y = Cx + du
\end{align} $$

But without integrators (or derivatives), there is no state of the system. It's not dynamical and has no memory. So, A=0, b=0, C=0. It is the zero order trivial case that reduces to a set of linear equations. So in practice, no one talks about state space unless there is a state, i.e. unless there is at least one derivative.

Also, of course, the canonical form shown differentiates the equations to eliminate integrals in favor of derivatives.

I think there may be some confusion in the responses between what is the plant, what is the compensation, and what is the system. My take on your block diagram is that it is the canonical form of a generic linear dynamic system in state space form. It really doesn't matter at the system level which is the plant and which is the compensation when you are solving a previously designed system. Of course it makes a tremendous difference when you are designing that system.
 
  • Like
Likes PainterGuy, eq1 and BvU
  • #10
Also that Wiki page talks about the representation of a linear system. Not all systems are control systems.
 
  • Like
Likes tech99 and PainterGuy
  • #11
anorlunda said:
Also that Wiki page talks about the representation of a linear system. Not all systems are control systems.
They're not even all continuous,
https://en.wikipedia.org/wiki/Bang–bang_control
Some don't even sense the output,
https://en.wikipedia.org/wiki/Feed_forward_(control)

But I totally agree with DaveE, the question is basically a semantics one. Once the definitions are agreed upon it will be pretty easy to check the question against the definition. The trick is agreeing on a definition. :)
 
  • Like
Likes DaveE and PainterGuy

FAQ: Does every control system contain an integrator?

Does every control system contain an integrator?

No, not every control system contains an integrator. An integrator is a mathematical component that performs the operation of integration, which is a type of mathematical transformation. It is commonly used in control systems to integrate the error signal in order to improve the system's response. However, there are control systems that do not require an integrator and can function effectively without it.

What is the purpose of an integrator in a control system?

The purpose of an integrator in a control system is to improve the system's response by integrating the error signal. This helps to reduce steady-state error and improve the system's stability and accuracy. An integrator also helps to eliminate the effects of disturbances and noise in the system.

Can a control system function without an integrator?

Yes, a control system can function without an integrator. While an integrator can improve the system's response and performance, it is not always necessary. Some control systems may not require an integrator depending on their design and purpose. In fact, there are control systems that use alternative methods to achieve the same results without an integrator.

How does an integrator affect the stability of a control system?

An integrator can affect the stability of a control system in both positive and negative ways. On one hand, it can improve the system's stability by reducing steady-state error. On the other hand, if not properly designed or tuned, an integrator can introduce instability in the system by amplifying noise and disturbances. Therefore, it is important to carefully consider the use of an integrator in a control system and ensure it is properly implemented.

Are there any disadvantages to using an integrator in a control system?

Yes, there are some potential disadvantages to using an integrator in a control system. These include increased complexity and cost, as well as the potential for instability if not properly designed or tuned. Additionally, an integrator may not always be necessary and can be replaced by alternative methods. Therefore, it is important to carefully consider the need for an integrator in a control system and weigh the potential advantages and disadvantages before implementing it.

Back
Top