- #1
agapito
- 49
- 0
I'm going through Peter Smith's book on Godel's Theorems. He mentions a simple formal theory ("Baby Arithmetic") whose logic needs to prove every instance of 'tau = tau'. Does every 'standard deductive apparatus' include the common identity axioms (e.g. 'x = x')?.
The axioms of "Baby Arithmetic" do not include them, so does this mean they are somewhat hidden in the undefined "standard propositional logic" used? He mentions, for instance, that the theory trivially proves '0 = 0'.
The application of Leibniz' Law is explicitly included, however.
Any help greatly appreciated. Agapito
The axioms of "Baby Arithmetic" do not include them, so does this mean they are somewhat hidden in the undefined "standard propositional logic" used? He mentions, for instance, that the theory trivially proves '0 = 0'.
The application of Leibniz' Law is explicitly included, however.
Any help greatly appreciated. Agapito