- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! :)
I am looking at this exercise: Let $f_n \to f$ uniformly on $A$. If $f_n: A \to [a,b], \forall n \in \mathbb{N}$,show that $f:A \to [a,b]$.If,$g:[a,b] \to \mathbb{R}$ is continuous at $[a,b]$,show that $g \circ f_n \to g \circ f$ uniformly on $A$.
That's the solution that the assistant of the professor gave us:
Firstly,we have $a \leq f_n(x) \leq b \Rightarrow \lim_{n \to +\infty} a \leq \lim_{n \to +\infty} f_n(x) \leq \lim_{n \to +\infty} b \Rightarrow a \leq f(x) \leq b$.
$g$ is continuous at $[a,b]$,so it is also uniformly continuous at this interval.So, $\forall \epsilon>0, \exists \delta=\delta(\epsilon)>0$ such that $\forall x,y \in [a,b]$ with $|x-y|< \delta \Rightarrow |g(x)-g(y)| < \epsilon$.
Let $\epsilon'>0$ .$\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$ we have $|f_n(x)-f(x)|< \epsilon' , \forall x \in A$.
But...is it necessary to write it like that:
Couldn't I just do it like that?
We pick $\epsilon'=\delta$.Since $f_n,f \in [a,b]$ we have that $|f_n-f|< \delta \Rightarrow |g(f_n(x))-g(f(x))|< \epsilon$.
I am looking at this exercise: Let $f_n \to f$ uniformly on $A$. If $f_n: A \to [a,b], \forall n \in \mathbb{N}$,show that $f:A \to [a,b]$.If,$g:[a,b] \to \mathbb{R}$ is continuous at $[a,b]$,show that $g \circ f_n \to g \circ f$ uniformly on $A$.
That's the solution that the assistant of the professor gave us:
Firstly,we have $a \leq f_n(x) \leq b \Rightarrow \lim_{n \to +\infty} a \leq \lim_{n \to +\infty} f_n(x) \leq \lim_{n \to +\infty} b \Rightarrow a \leq f(x) \leq b$.
$g$ is continuous at $[a,b]$,so it is also uniformly continuous at this interval.So, $\forall \epsilon>0, \exists \delta=\delta(\epsilon)>0$ such that $\forall x,y \in [a,b]$ with $|x-y|< \delta \Rightarrow |g(x)-g(y)| < \epsilon$.
Let $\epsilon'>0$ .$\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$ we have $|f_n(x)-f(x)|< \epsilon' , \forall x \in A$.
Taking the supremum we have $\sup_{x}|g(f_n(x))-g(f(x))|< \epsilon \Rightarrow \sup |g(f_n(x))-g(f(x))| \to 0$.We choose $\epsilon'=\delta$.Let now $\epsilon>0$.For $\delta>0, \exists n_0$ such that $\forall n \geq n_0, |f_n(x)-f(x)|< \delta, \forall x \in A \Rightarrow |g(f_n(x))-g(f(x))|< \epsilon $ .
But...is it necessary to write it like that:
We choose $\epsilon'=\delta$.Let now $\epsilon>0$.For $\delta>0, \exists n_0$ such that $\forall n \geq n_0, |f_n(x)-f(x)|< \delta, \forall x \in A \Rightarrow |g(f_n(x))-g(f(x))|< \epsilon $ .
Couldn't I just do it like that?
We pick $\epsilon'=\delta$.Since $f_n,f \in [a,b]$ we have that $|f_n-f|< \delta \Rightarrow |g(f_n(x))-g(f(x))|< \epsilon$.