- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Wave)
If I want to prove that $A \cap B=A \text{ iff } A \subset B \text{ iff } A \cup B=B$.
Do I have to prove the following:
$A \cap B=A \rightarrow A \subset B$, $A \subset B \rightarrow A \cap B=A, A \subset B \rightarrow A \cup B=B, A \cup B=B \rightarrow A \subset B $ and $A \cup B=B \rightarrow A \cap B=A$ ?
If I want to prove that $A \cap B=A \text{ iff } A \subset B \text{ iff } A \cup B=B$.
Do I have to prove the following:
$A \cap B=A \rightarrow A \subset B$, $A \subset B \rightarrow A \cap B=A, A \subset B \rightarrow A \cup B=B, A \cup B=B \rightarrow A \subset B $ and $A \cup B=B \rightarrow A \cap B=A$ ?