- #1
jostpuur
- 2,116
- 19
If [tex]f_1,f_2,f_3,\ldots[/tex] and [tex]g_1,g_2,g_3,\ldots[/tex] are some arbitrary real sequences, is it true that
[tex]
\underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) = (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n)?
[/tex]
For arbitrary [tex]\epsilon >0[/tex] there exists [tex]N\in\mathbb{N}[/tex] so that
[tex]
n > N\quad\implies\quad f_n > \underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon,
[/tex]
so
[tex]
\underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq \underset{n\to\infty}{\textrm{lim inf}}\big((\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) g_n\big) \;=\; (\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),
[/tex]
which implies
[tex]
\underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),
[/tex]
but I don't know how to do the other direction.
edit: I just realized I'm assuming [tex]\underset{n\to\infty}{\textrm{lim inf}}\; g_n \geq 0[/tex] in the calculation, although it was not my original intention, but I think I'll try to not fix it in the remaining editing time. (Actually assuming [tex]\underset{k\to\infty}{\textrm{lim inf}}\; f_k - \epsilon \geq 0[/tex] too...)
edit edit: In fact I think I'll add the assumption that the sequences are non-negative, because otherwise I have a counter example [tex] (f_n)_{n\in\mathbb{N}} = (1,-1,1,-1,\ldots)[/tex], [tex](g_n)_{n\in\mathbb{N}}=(-1,1,-1,1,\ldots)[/tex].
[tex]
\underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) = (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n)?
[/tex]
For arbitrary [tex]\epsilon >0[/tex] there exists [tex]N\in\mathbb{N}[/tex] so that
[tex]
n > N\quad\implies\quad f_n > \underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon,
[/tex]
so
[tex]
\underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq \underset{n\to\infty}{\textrm{lim inf}}\big((\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) g_n\big) \;=\; (\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),
[/tex]
which implies
[tex]
\underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),
[/tex]
but I don't know how to do the other direction.
edit: I just realized I'm assuming [tex]\underset{n\to\infty}{\textrm{lim inf}}\; g_n \geq 0[/tex] in the calculation, although it was not my original intention, but I think I'll try to not fix it in the remaining editing time. (Actually assuming [tex]\underset{k\to\infty}{\textrm{lim inf}}\; f_k - \epsilon \geq 0[/tex] too...)
edit edit: In fact I think I'll add the assumption that the sequences are non-negative, because otherwise I have a counter example [tex] (f_n)_{n\in\mathbb{N}} = (1,-1,1,-1,\ldots)[/tex], [tex](g_n)_{n\in\mathbb{N}}=(-1,1,-1,1,\ldots)[/tex].
Last edited: