- #1
Vulture1991
- 7
- 0
Let [TEX]f:\mathbb{R}^m\rightarrow\mathbb{R}^m[/TEX]. Define the zero set by [TEX]\mathcal{Z}\triangleq\{x\in\mathbb{R}^m | f(x)=\mathbf{0}\}[/TEX] and an [TEX]\epsilon[/TEX]-approximation of this set by [TEX]\mathcal{Z}_\epsilon\triangleq\{x\in\mathbb{R}^m|~||f(x)||\leq\epsilon\}[/TEX] for some [TEX]\epsilon>0[/TEX]. Clearly [TEX]\mathcal{Z}\subseteq \mathcal{Z}_\epsilon[/TEX]. Can one assume any condition on the function [TEX]f[/TEX] so that[TEX]
\lim_{\epsilon\rightarrow 0}~\max_{x\in \mathcal{Z}_\epsilon}~\text{dist}(x, \mathcal{Z})=0,
[/TEX]holds?
I know in general this doesn't hold by this example (function of a scalar variable):
[TEX]
f(x)=\left\{\begin{align}
0,\quad{x\leq 0};
\\
1/x,\quad x>0.
\end{align}
\right.
[/TEX]
I really appreciate any help or hint.
Thank you.
\lim_{\epsilon\rightarrow 0}~\max_{x\in \mathcal{Z}_\epsilon}~\text{dist}(x, \mathcal{Z})=0,
[/TEX]holds?
I know in general this doesn't hold by this example (function of a scalar variable):
[TEX]
f(x)=\left\{\begin{align}
0,\quad{x\leq 0};
\\
1/x,\quad x>0.
\end{align}
\right.
[/TEX]
I really appreciate any help or hint.
Thank you.