- #1
stunner5000pt
- 1,465
- 4
Let T: V->V be a linear transformation where V is finite dimensional. Show ath exactly one of (i) an (ii) holds
i) T(v) = 0 for some v not zero in V
ii) T(x) = v has a solution x in V for every v in V
do they mean that if i holds then ii cannot hold?
Ok suppose i holds
T(v) = 0 for some v in V, v not zero
then T(T(v)) = T(0) = 0
let T(v) = x
then T(x) = 0
only solution here is x = v
So T(x) = 0 for all x. ANd thus is not possible for T(x) = v if T(v) = 0
i) T(v) = 0 for some v not zero in V
ii) T(x) = v has a solution x in V for every v in V
do they mean that if i holds then ii cannot hold?
Ok suppose i holds
T(v) = 0 for some v in V, v not zero
then T(T(v)) = T(0) = 0
let T(v) = x
then T(x) = 0
only solution here is x = v
So T(x) = 0 for all x. ANd thus is not possible for T(x) = v if T(v) = 0