- #1
Mr Virtual
- 218
- 4
Suppose we have an electron. Electrostatic potential of the electron at any point at a distance r from it,
V = kq/r = (9*10^9 * 1.6*10^-19)/r
Now, as r decreases, V increases. We say that V is the amount of work done by the electron to bring a unit poitive charge from infinty to r. If r is close to zero, then V will be quite high.
I believe that r cannot be exactly zero as that would mean the electron and the test charge are at the same place at once. According to Pauli's principle, no two particles/fermions can occupy the same space at once. Since 'r' cannot be zero, V cannot be infinte. Does this mean that Pauli's principle protects electron from having infinite energy (I hope I am not mixing QM with classical physics too much)?
If I am wrong, please supply explanations as to why that is so.
warm regards
Mr V
V = kq/r = (9*10^9 * 1.6*10^-19)/r
Now, as r decreases, V increases. We say that V is the amount of work done by the electron to bring a unit poitive charge from infinty to r. If r is close to zero, then V will be quite high.
I believe that r cannot be exactly zero as that would mean the electron and the test charge are at the same place at once. According to Pauli's principle, no two particles/fermions can occupy the same space at once. Since 'r' cannot be zero, V cannot be infinte. Does this mean that Pauli's principle protects electron from having infinite energy (I hope I am not mixing QM with classical physics too much)?
If I am wrong, please supply explanations as to why that is so.
warm regards
Mr V