MHB Does R/N Form a Ring with Unity if N is a Proper Ideal of R?

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Good afternoon. Here is the problem:

Show that if $R$ is a ring with unity and $N$ is an ideal of $R$ such that $N \neq R$, then $R/N$ is a ring with unity.

My answer: Consider the homomorphism $\phi: R \to R/N$. Given $r \in R$ we have that $\phi(r) = r + N = \phi(1 \cdot r) = \phi(r \cdot 1) = (1+N)(r+N) = (r+N)(1+N)$, therefore $1+N$ is the unity of $R/N$.

I appreciate the help. Cheers! (Yes)

P.S.: I am assuming the usual operations concerning factor rings:

$(a+N) + (b+N) = (a+b) + N$ and $(a+N)(b+N) = (ab) + N$.
 
Physics news on Phys.org
Fantini said:
Good afternoon. Here is the problem:

Show that if $R$ is a ring with unity and $N$ is an ideal of $R$ such that $N \neq R$, then $R/N$ is a ring with unity.

My answer: Consider the homomorphism $\phi: R \to R/N$. Given $r \in R$ we have that $\phi(r) = r + N = \phi(1 \cdot r) = \phi(r \cdot 1) = (1+N)(r+N) = (r+N)(1+N)$, therefore $1+N$ is the unity of $R/N$.

I appreciate the help. Cheers! (Yes)

P.S.: I am assuming the usual operations concerning factor rings:

$(a+N) + (b+N) = (a+b) + N$ and $(a+N)(b+N) = (ab) + N$.
Looks right to me. Only thing, there wasn't any need to invoke a homomorphism here. You could just simply show that $(1+N)(r+N)=(r+N)(1+N)=r+N$ for all r in R. Well, there ain't much to show though.
 
the only tricky part is that 1+N might actually = N, but this means that 1 is in N,

in which case we still have a multiplicative identity, but:

R/N = R/R = {0}, which is a "silly" ring. this is why we insist N ≠ R at the outset.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top