- #1
WMDhamnekar
MHB
- 379
- 28
Hi,
In $\mathbb{R^3} || v-w ||^2=||v||^2 + ||w||^2 - 2||v||\cdot ||w||\cos{\theta}$ But can we say $||v+w||^2=||v||^2 +||w||^2 + 2||v|| \cdot||w|| \cos{\theta}$ where v and w are any two vectors in $\mathbb{R}^3$
In $\mathbb{R^3} || v-w ||^2=||v||^2 + ||w||^2 - 2||v||\cdot ||w||\cos{\theta}$ But can we say $||v+w||^2=||v||^2 +||w||^2 + 2||v|| \cdot||w|| \cos{\theta}$ where v and w are any two vectors in $\mathbb{R}^3$