- #1
jcap
- 170
- 12
The low-energy effective action of the bosonic string is given by:
$$S=\frac{1}{2k_0^2}\int d^{26}X\sqrt{-G}e^{-2\Phi}\Big(\mathcal{R}-\frac{1}{12}H_{\mu\nu\lambda}H^{\mu\nu\lambda}+4\partial_\mu\Phi\partial^\mu\Phi\Big)$$
where ##H_{\mu\nu\lambda}=\partial_\mu B_{\nu\lambda}+\partial_\nu B_{\lambda\mu}+\partial_\lambda B_{\mu\nu}##.
There are three fields: the space-time metric ##G_{\mu\nu}##, the anti-symmetric tensor field ##B_{\mu\nu}## and the scalar dilaton field ##\Phi##.
Does the scalar dilaton field ##\Phi## change the effective string coupling and therefore the mass of massive particles (but leaves massless particles unaffected)?
$$S=\frac{1}{2k_0^2}\int d^{26}X\sqrt{-G}e^{-2\Phi}\Big(\mathcal{R}-\frac{1}{12}H_{\mu\nu\lambda}H^{\mu\nu\lambda}+4\partial_\mu\Phi\partial^\mu\Phi\Big)$$
where ##H_{\mu\nu\lambda}=\partial_\mu B_{\nu\lambda}+\partial_\nu B_{\lambda\mu}+\partial_\lambda B_{\mu\nu}##.
There are three fields: the space-time metric ##G_{\mu\nu}##, the anti-symmetric tensor field ##B_{\mu\nu}## and the scalar dilaton field ##\Phi##.
Does the scalar dilaton field ##\Phi## change the effective string coupling and therefore the mass of massive particles (but leaves massless particles unaffected)?