- #1
alyafey22
Gold Member
MHB
- 1,561
- 1
\(\displaystyle \int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt\)
Can we say the following :
\(\displaystyle \int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt=\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt+\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt\)
1-\(\displaystyle \int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt \leq \int^{\epsilon}_{0} \log(t) dt <\infty\)
2-\(\displaystyle \int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt\)
If that is correct , how to check near infinity ?
Can we say the following :
\(\displaystyle \int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt=\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt+\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt\)
1-\(\displaystyle \int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt \leq \int^{\epsilon}_{0} \log(t) dt <\infty\)
2-\(\displaystyle \int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt\)
If that is correct , how to check near infinity ?